

ISSN 2313-6669

Науково-технічний журнал
www.journal-niisk.com

НАУКА ТА БУДІВНИЦТВО

SCIENCE & CONSTRUCTION

2019'4

НАУКА

ТА БУДІВНИЦТВО

4(22)'2019

Виходить чотири рази на рік

ЗАСНОВНИК

Державне підприємство «Державний науково-дослідний інститут будівельних конструкцій»

Заснований в лютому 2014 року.

Свідоцтво про державну реєстрацію
КВ № 20575-10375 Р від 24.02.2014 р.

Журнал входить до міжнародної наукометричної бази даних Copernicus з №1(15) 2018 року
<https://journals.indexcopernicus.com/search/details?id=63800&lang=pl>

Головний редактор:

Фаренюк Г.Г., д.т.н., Україна

Заступник Головного редактора:

Калюх Ю. І., д.т.н., проф., Україна

Редакційна колегія:

Балаш Георгій, д.т.н., проф., Угорська Республіка
Бамбура А. М., д.т.н., проф., Україна
Брандль Хайнц, д.т.н., проф., Австрійська Республіка
Ванічек Іван, д.т.н., проф., Чеська Республіка
Жусупбеков А., Ж., д.т.н., проф., Республіка Казахстан
Ковров А. В., к.т.н., проф., Україна
Назаренко І. І., д.т.н., проф., Україна
Немчинов Ю. І., д.т.н., проф., Україна
Савицький М. В., д.т.н., проф., Україна
Шейніч Л. О., д.т.н., проф., Україна

Виконавчий редактор: Овсяннікова Т.М. к.т.н., с.н.с.,
Україна
Комп'ютерна верстка: Чорна К.В., Україна

Затверджено до друку Науково-технічною радою
ДП НДБК (Протокол №6 від 24.12.2019).

Журнал включено до переліку наукових фахових видань, в яких можуть публікуватися результати дисертаційних робіт (Затверджено наказом Міністерства освіти і науки України від 06.03.2015 р. № 261).

При передруках посилання на «Наука та будівництво» є обов'язковим. Редакція не завжди поділяє думку авторів.

Адреса редакції: вул. Преображенська, 5/2, м. Київ-37, 03037, тел.: + 38 (044) 249-38-04
E-mail: journal@ndibk.gov.ua,
www.journal-niisk.com

© "Наука та будівництво" 2019

Підписано до друку: 24.12.2019

Віддруковано: Товариство з обмеженою
відповідальністю «Мастеркніг», 02000 м. Київ,
вул. Максима Кривоноса, 2Б

Свідоцтво про реєстрацію суб'єкта видавничої
справи ДК №3861 від 18.08.2010

Замовлення №12/30 від 30.12.2019

Наклад 100 примірників

ЗМІСТ

4	Фаренюк Г.Г. Експериментальна оцінка показників надійності ETICS
11	Оксень Ю.І. Досвід застосування віброакустичного аналізу при випробуваннях залізобетонного мосту через річку Дністер в с. Заліски
21	Шейніч Л.А., Миколаєць М.Г., Крилов Е.О. Проблеми виникнення хімічної корозії бетону на залізничних шляхах України
27	Лісений О.М., Любченко І.Г., Слюсаренко Ю.С. Металеві циліндричні силоси для зерна
33	Мар'єнков М. Г., Дунін В. А., Маргвелашвілі Н., Фаренюк Г.Г., Берчун Я. О. Експериментальний моніторинг та динамічна сертифікація будівельних конструкцій
45	Трохименко М.П., Заєць В.П., Осипчук Л.М., Котенко С.Г. Метод розрахунку акустичної ефективності шумозахисних екранів на мостових спорудах
52	Гурківський О.Б., Болотов О. Ю. Розрахунок на температурні впливи монолітного залізобетонного каркасу багатоповерхової будівлі на усіх стадіях зведення та експлуатації
60	Белоконь А.М., Бень І.В., Фесенко О.А., Чорновол В.О. Оцінка несучої здатності металевих пальтових стійок каркасно-модульних конструкцій фотогальванічної електростанції на слабких грунтах

Science & CONSTRUCTION

4(22)'2019

Published four times a year

FOUNDER

State enterprise «State Scientific Research Institute of Building Constructions»

Founded in February 2014.

Certificate of state registration

KV № 20575-10375 R dated on 24.02.2014

The journal is included in the Index Copernicus scientific database from №1(15) 2018

<https://journals.indexcopernicus.com/search/details?id=63800&lang=pl>

Editor-in-chief:

Farenyuk G., Dr., Ukraine

Deputy editor-in-chief:

Kaliukh Yu., Dr., Prof., Ukraine

Editorial Board

Balazs G., Dr., Prof., Republic of Hungary

Bambura A., Dr., Prof., Ukraine

Brandl H., Dr., Prof., Republic of Austria

Kovrov A., PhD, Prof., Ukraine

Nazarenko I., Dr., Prof., Ukraine

Nemchynov Iu., Dr., Prof., Ukraine

Savytskyi M., Dr., Prof., Ukraine

Sheinich L., Dr., Prof., Ukraine

Vanicek I., Dr., Prof., Czech Republic

Zhussupbekov A., Dr., Prof., Republic of Kazakhstan

Executive Editor: T. Ovsyannikova, PhD, Ukraine

Computer layout: K. Chorna

Issue is approved for print by Scientific and technical Council of SE NIISK (Protocol № 6 dated on 24.12.2019)

Journal is included in List of the scientific professional issues, where the dissertation works results may be published (It is approved by order of Ministry of education and science of Ukraine, dd. 06.03.2015, № 261).

The referencing on «Science & Construction» is obligatory when reprinting. The Editorial Board may be not agreed with authors' opinion.

Address of Editorial Board:

5/2 Preobrazhenska str., Kyiv-37, 03037,

tel.: + 38 (044) 249-38-04

E-mail: journal@ndibk.gov.ua,

www.journal-niisk.com

© «Science & Construction», 2019

Signed for printing: 24.12.2019

Printed: Master book Limited Liability Company 2B
Maksyma Kryvonosa St., Kyiv, 02000

Certificate of Publishing Business Entity Registration
DK No. 3861 of 18.08.2010

Order № 12/30 from 30.12.2019

Drawing: 100 copy

CONTENT

- 4 Farenyuk G.G. Experimental evaluation of ETICS reliability factors
- 11 Oksen Y. I. Experience of application of vibroacoustic analysis to testing of a reinforced concrete bridge on the Dnister river in v. Zalisky
- 21 Sheinich L.A., Mykolaiets M.G., Krylov E.A. The problems of chemical corrosion of concrete on railways of Ukraine
- 27 Lisenyi O.M., Liubchenko I.H., Slyusarenko, Yu.S. Steel circular silos for grain
- 33 Marienkov M. H., Dunin V. A., Margvelashvili N. , Farenyuk G.G., Berchun Ya. O. Experimental monitoring and dynamic certification of building structures
- 45 Trochymenko M. P., Zaets V. P., Osipchuk L. N., Kotenko S. G. The efficiency calculation method for noise barriers located on bridge structures
- 52 Gurkivskyi O.B., Bolotov A. Yu. The cast-in-place reinforced concrete frame calculations for temperature effects at all construction and operation stages in multi-storey building
- 60 Belokon A.M., Ben I.V., Fesenko O.A., Chornovol V.O. Assessment of bearing capacity of metal end-bearing pile of frame modular structures of photovoltaic power station on loose soil

Doi: 10.33644/01007

UDC 624.04:692.88:697.11:699.86

FARENYUK G.G.

Doctor of Technical Sciences,
Prof., Director, State Enterprise
"The State Research Institute of
Building Constructions",
Kyiv, Ukraine
e-mail: farenyuk@ndibk.gov.ua,
tel.: + 38 (044) 249-72-34,
ORCID: 0000-0002-5703-3976

EXPERIMENTAL EVALUATION OF ETICS RELIABILITY FACTORS

ABSTRACT

The paper covers analysis of regulations and documents regarding the façade thermal insulation, methodological grounds for the system of regulations and standards and further development of national legal framework for design of insulating sheeting for buildings. This problem is actual for Ukraine where takes place a large-scale thermal modernization of existing residential and public buildings. The paper continues the series on previous scientific studies of the author with main ones given in the references. The national system of regulations and standards on the façade thermal insulation has a strong methodological structure which includes both national regulative framework and European standards. Being combined this way, the system makes it possible to assess and to design insulating sheeting for buildings according up-to-date world's practice and with regard to climate, technologies and market of Ukraine. The paper states main principles for standard setting concerning suitability assessment of new building envelope. The standard on constructions of outward walls with facade heat-insulation with stucco facing what is called ETICS (Exterior Thermal Insulation Composite System) in Europe was developed and adopted in Ukraine as early as in 2008. The author analyses the provisions from this standard and says those need to be revised with regard to experience and knowledge gained since it is in force. The main problems that arise in the application of facade thermal insulation in new buildings are identified, the insufficiency of assessment only in terms of heat transfer resistance of the structure is proved and

the need of assessment in terms of air permeability resistance of the building envelope is provided. The experimental data regarding the infiltration effect on the thermal properties of external walls are given. The consideration and evaluation of ETICS as a system or as a kit are featured, as well as regulation of criteria of ETICS thermal reliability are reviewed.

KEY WORDS: thermal modernization, façade thermal insulation, criteria of thermal reliability, building envelope, national regulations, air permeability.

ЕКСПЕРИМЕНТАЛЬНА ОЦІНКА ПОКАЗНИКІВ НАДІЙНОСТІ ETICS

АНОТАЦІЯ

Стаття присвячена аналізу стану нормативних актів та документів стосовно конструкцій фасадної теплоізоляції, методичних основ створення системи норм та стандартів, та визначеню напрямків розвитку національної нормативної системи проектування теплоізоляційної оболонки будівель. Ця проблема є актуальною для України, де починається дійсно масштабна термомодернізація існуючих житлових та громадських будівель. Стаття є продовженням попередніх наукових робіт автора, основні з яких наведено у бібліографії. Вітчизняна система норм та стандартів з фасадної теплоізоляції має чітку методологічну структуру, яка включає як національні нормативні документи, так і європейські. Саме таке поєднання дозволяє здійснювати оцінку та проектування теплоізоляційної оболонки будівель за сучас-

ними світовими практиками з урахуванням кліматичних, технологічних, ринкових умов України. В статті наведені основні положення встановлення критеріїв оцінки придатності нових конструктивних принципів побудови зовнішніх стінових огорожувальних конструкцій. В Україні ще у 2008 р. був розроблений та прийнятий стандарт на конструкції фасадної теплоізоляції з опорядженням штукатурками, які у Європі мають назву ETICS (Exterior Thermal Insulation Composite System). Автор проводить аналіз положень цього стандарту та зазначається необхідність його перегляду з урахуванням отриманого досвіду та нових знань, які були отримані під час його дії. Визначено основні проблеми, які виникають при застосуванні конструкцій фасадної теплоізоляції при новому будівництві, та обґрунтовано недостатність оцінки тільки за показником опору теплопередачі конструкції і необхідність обов'язкової оцінки за показником опору повітропроникності стінової огорожувальної конструкції. Наведено експериментальні дані впливу інфільтрації на теплові властивості зовнішніх стін. Розглянуто особливості розгляду та оцінки ETICS як системи, чи як комплекту, та питання регламентації критеріїв теплової надійності збірних конструктивних систем.

КЛЮЧОВІ СЛОВА: термомодернізація, фасадна теплоізоляція, критерії теплової надійності, огорожувальні конструкції, національні нормативні документи, повітропроникність

INTRODUCTION

The strategic purpose of the national economy is to ensure the sustainable use of energy resources. The successful solution to this problem depends heavily on the change in energy status of residential and public buildings with the energy consumption being up to 40% in the energy balance of the country. One of effective ways to increase the energy efficiency of buildings is the use of façade thermal insulation (Fig. 1).

As a composite system of the facade, thermal insulation appeared in the process of reconstruction of buildings and facilities and was firstly presented in the national technical publications [1]. In national construction practice, the façade thermal insulation is widely used in new structures, due to the fact that the principle of facade thermal insulation [2] makes possible to meet the requirements to reducing specific heat loss for heating of buildings while ensuring the necessary thermal reliability of structures [3] in operation [4].

Despite the crisis in the national economy, the market of thermal insulation materials is constantly growing. At the same time, more than 40 per cent of all thermal insulation materials are used for the

Figure 1 - Façade thermal insulation of modern buildings

façade thermal insulation. The most widely used one is ETICS (Exterior Thermal Insulation Composite System) which applies mainly due to the economic performance, so ETICS will be the main focus of this paper. At the same time, the last 5 or 6 years the share of structures with ventilated air layer and curtain walls has been growing rapidly in the national construction area. It should be borne in mind that the use of façade thermal insulation structures do not provide high performance of buildings by default. In [5], there are examples of how thermal failures of façade thermal insulation appear, how they are classified and the expenses due to the occurrence of the failures are given. This is the reason why the problem of ensuring the required ETICS operation characteristics is of big importance in Ukraine.

PURPOSE

Determination of the basic methodological principles for the development of a regulatory framework on the normalization of safety indices of the façade thermal insulation

MAIN PART

In Ukraine, there are two interconnected branches of regulation and standardization, the national and European ones. The criteria defining the safety of structures and buildings are set in the public construction norms, which are mandatory for all members of the construction market. And standards have a voluntary nature, however in case if standards are referenced in the state building rules, the requirements of the standards become mandatory.

On Fig 2. there is a system regulating (Fig.2) the requirements to the structures of facade heat insulation and it consists of national building rules, harmonized European standards which set the design requirements with regard to energy efficiency, regulations which establish the design requirements for the façade heat insulation structures, and standards setting parameters for ETICS and suspended facades.

DBN V.1.2-11:2008 [6] sets the requirements for the incorporation of durability parameters of construction products in the relevant regulatory documents. The requirements are implemented in the following building regulations:

- DBN V.2.6-31:2016 [7] establishes requirements for heat insulation parameters of envelope structures and buildings [1].
- DBN V.2.6-33:2018 [8] sets mandatory requirements for reliability parameters of facade heat insulation. Regulatory documents (Fig.3) provide a detailed description of the requirements depending on the class systems.

DSTU B.V.2.6-34 [9] sets ETICS design classes such as suspended facades and transparent facades. DSTU B.V.2.6-88 [10] gives procedures of technical assessment and monitoring.

Requirements for ETICS and their test methods are regulated also by DSTU B.V.2.6-36 [11] and pr DSTU-N B ETAG 004.

Requirements for suspended façades and their test methods are prescribed in DSTU B.V.2.6-35 [12], DSTU B EN 13830 [13] and DSTU-N B ETAG 17 [14].

The framework for design concept of facade heat insulation is taken from the approach to composite system established in European

standards. The composite system consists of a supporting part of the exterior wall and a thermal insulation structure that is placed on the external surface of the wall and includes such products and components as a thermal insulation layer, a finishing coat and means of attaching those to the bearing element. The list, type and set of products and components are strictly fixed in the kit and their quantity may vary according to the demands of a project.

An important issue is also fire safety requirements, which are based on the flammability rate of materials [3] according to the Ukrainian current classification, which does not agree with the European system yet. In the existing system of rules and standards there

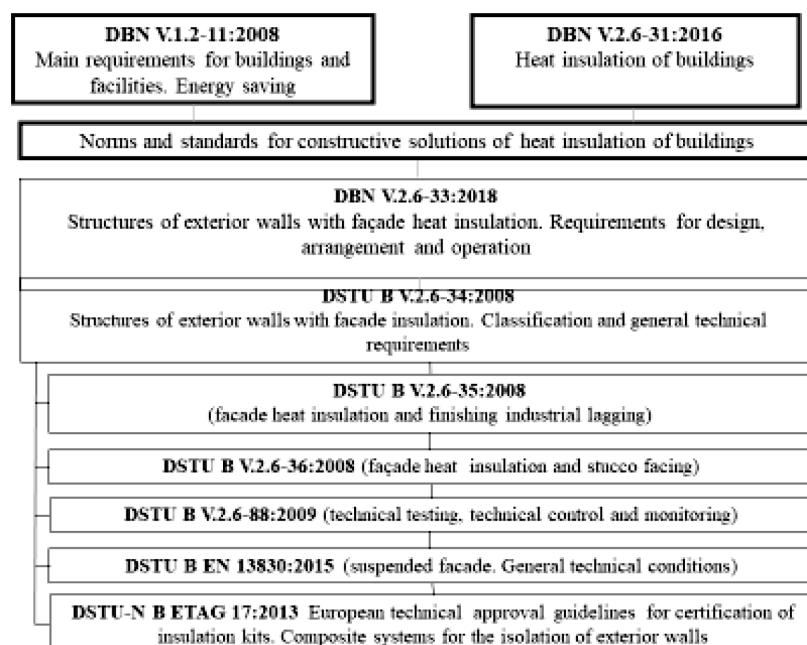


Figure 2 - System of regulations for façade thermal insulation

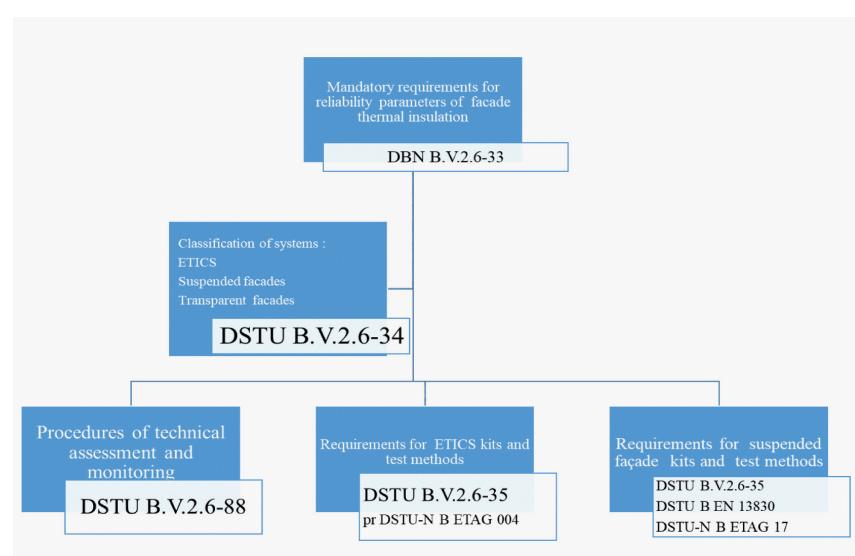


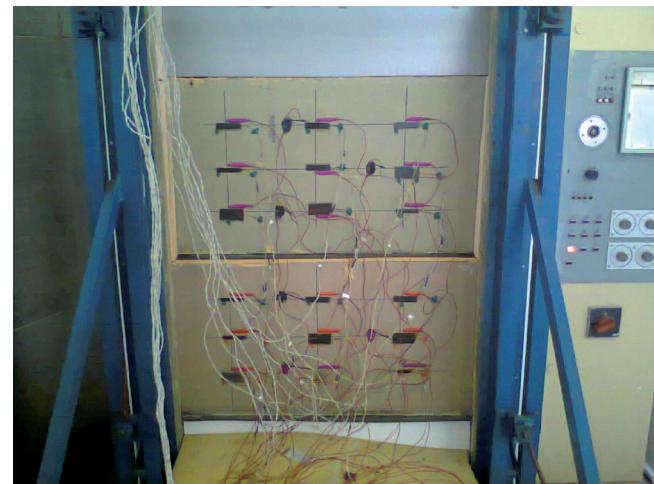
Figure 3 - Regulations for facade thermal insulation

are 24 indicators for the fit for use assessment based on the design concept of façade heat insulation [10].

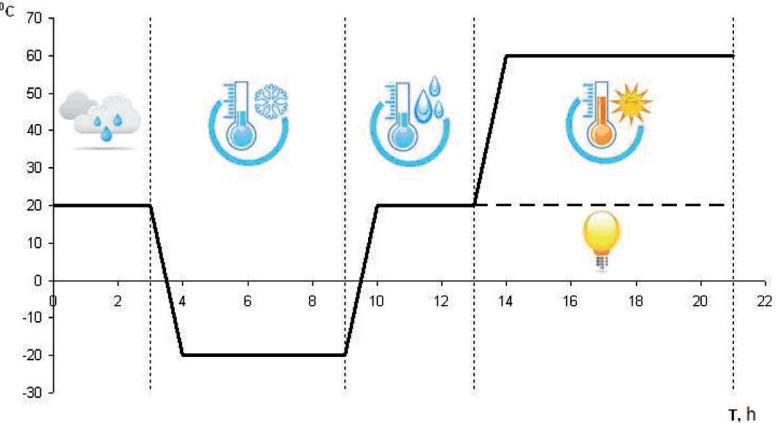
One of the indicators is the stability of ETICS thermal-insulating properties. A prerequisite for energy performance is the thermal reliability condition, as a house cannot be energy efficient if its thermal insulation envelope is not reliable in terms of thermal performance. Changing the structural principles of the thermal envelope, i.e. the transition from single-layer brick or concrete walls to multilayer walls with the façade heat insulation requires a fundamental change in the methodology for assessing the operational suitability of modern envelope structures. We introduce the definition of the thermal failure concept as a key concept of thermal reliability.

The main criterion of thermal reliability is the structural property to maintain in time the level of the resistance to heat transfer [3]

$$Rr = 1 - \frac{R_{\Sigma np}(0) - R_{\Sigma np}(N)}{R_{\Sigma np}(0)},$$


where Rr is a criterion of heat reliability, $R_{\Sigma np(0)}$ is a corrected resistance of heat transfer of the structure at the initial stage, $R_{\Sigma np(N)}$ is a corrected resistance of heat transfer of the structure in N cycles of climatic effects.

The physical essence of the criterion is to determine the effectiveness of enclosing structure during the target service life with possible changes in the state of the structural elements under the influence of various (climatic, mounting, operational, etc.) factors [15].


The criterion is experimentally determined by testing ETICS (Fig.4) for the climatic influences resistance such as the effects of high and low temperatures, soaking with water and with weak acidic and alkaline solutions, which simulate precipitation of the urban environment (Fig.5).

The system of regulations shown in Fig. 2 establishes the factors of thermal reliability for structures and structural systems. DBN V.2.6-33 sets the requirements to structural systems with façade thermal insulation (see Fig.3) and DSTU B.V.2.6-35 and DSTU B.V.2.6-36 provide the requirements to kits and their components. Conformity assessment or determination of fitness for use are implemented according to the last standards but this is not always sufficient - even in case of positive results of such assessment - for the ensuring of thermal reliability of end product such as structural system or the whole building.

ETICS was developed for the heat insulation of existing buildings with the external walls made of bricks being at

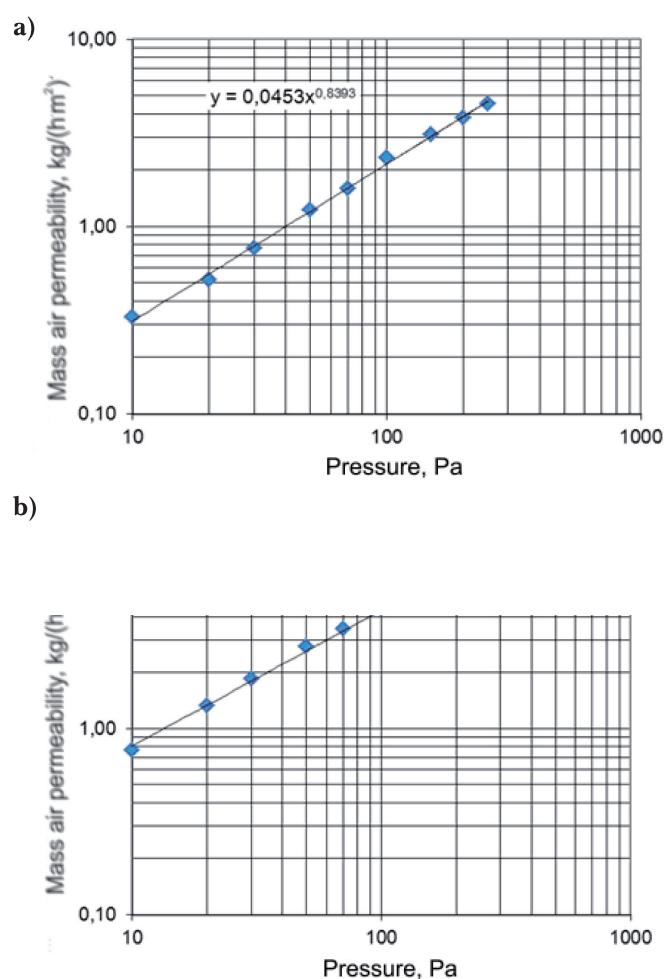
Figure 4 - Testing procedure of facade heat insulation structures with rendering for resistance to climatic influence

Figure 5 - Tests of resistance to climatic factors: requirements of DSTU B.V.2.6-36, ETAG 004

least 510 mm thick or of 320 mm thick concrete panels etc. In Ukraine ETICS is widely applied in new buildings, for instance, in masonry structures made of 250 mm thick single bricks having ETICS fixed on the external surface without any special preparation of joints between the bricks.

Determination of resistance to climatic effect (see fig. 4,5) is sufficient to find the stability over time of heat transfer resistance of the composite system because ETICS reveals basically the value of this indicator.

Figure 5 - NIISK has investigated the influences of air flows caused by the natural air infiltration on ETICS operational characteristics [8]. The investigations have been performed for the various systems, including those with concrete blocks bases, ceramic blocks, bricks etc. (Fig.6).


The results of the study indicate the high air permeability of ETICS when applying it to an unprepared brick or block masonry surface. With a pressure drop of 50 Pa only, the outside air flow through the design system ranged from 1.01 to 2.27 m^3 through 1 square meter of the external wall (Table 1,2).

The experimental data show that in terms of resistance to air permeability, the structure of the wall does not meet the regulatory requirements but in this case the decisive characteristics has not ETICS but the bearing part of the wall, which ETICS is installed to. Accordingly, in terms of resistance to air permeability ETICS should be considered as a kit unlike a composite system which should satisfy the requirements of DBN B.2.6-31.

In the system of regulations shown in Fig. 2 this methodological procedure is provided, it means that para.6.3.1, DBN B.2.6-33: 2018 establishes the follows [6] - thermal characteristics of composite system such as corrected heat transfer resistance, air permeability and heat resistance - are determined according to DBN B.2.6-31. But in practice the given requirements are not satisfied what leads to thermal conditions where it is ignored the special consideration of ETICS as a kit or a system when applying apparently certified ETICS.

CONCLUSIONS

The developed system of norms and standards for the regulation of safety requirements to the facade thermal insulation takes

Figure 6 - Dependency of mass air permeability from pressure drop in ETICS with 120 mm thick rock wool and base made of 250 mm thick ceramic void blocks (a) and loam bricks^o(b)

Table 1 - The investigation results of air permeability of ETICS structural system with 120 mm thick rock wool and base made of 250 mm thick ceramic void blocks

Indicator of filtration mode	0,84					
	10	20	30	50	70	100
Pressure drop, ΔP Pa						
Volume air permeability, $\text{m}^3/(\text{hour} \cdot \text{m}^2)$	0,27	0,43	0,63	1,01	1,32	1,91
Mass air permeability, $\text{kg}/(\text{hour} \cdot \text{m}^2)$	0,33	0,52	0,76	1,22	1,60	2,31
Relevant height of building	30,56	38,38	39,29	40,85	43,75	45,20
Standard resistance of air permeability, $(\text{m}^2 \cdot \text{hour} \cdot \text{Pa})/\text{kg}$	20	40	60	100	140	200
Compliance to the standard requirements	+	-	-	-	-	-

Table 2 - The investigation results of air permeability of ETICS structural system with 120 mm thick rock wool and base made of 250 mm thick loam bricks

Indicator of filtration mode	0,73					
Pressure drop, ΔP Pa	10	20	30	50	70	100
Volume air permeability, $\text{m}^3/(\text{hour} \cdot \text{m}^2)$	0,63	1,1	1,52	2,27	2,85	3,65
Mass air permeability, $\text{kg}/(\text{hour} \cdot \text{m}^2)$	0,76	1,33	1,84	2,75	3,45	4,42
Air permeability resistance, $(\text{m}^2 \cdot \text{hour} \cdot \text{Pa})/\text{kg}$	13,10	15,00	16,28	18,17	20,27	22,61
Standard resistance of air permeability, $(\text{m}^2 \cdot \text{hour} \cdot \text{Pa})/\text{kg}$	20	40	60	100	140	200
Compliance to the standard requirements	-	-	-	-	-	-

into account the European experience, practice of national construction and thermal modernization of buildings. This system was designed in 2007-2009 and since it is in force new knowledge has been generated. This is the reason why it is necessary to make changes in the relevant norms and standards. DBN V.2.6-33:2018 needs revision as requirements to the prefabricated composite systems should be given in details. DSTU B V.2.6-34: 2008 has lost the relevance because it repeats the provisions of DBN B.2.6033: 2018 and contains an outdated classification of composite systems. DSTU B V.2.6-35: 2008 and DSTU B V.2.6-36: 2008 should list the requirements to the composite systems and its components as well as the test methods for the parameters provided by these standards. For this purpose the European approach aimed at assessing the intended use rather than the compliance of the composite systems should be used more widely because composite systems of facade thermal insulation have a significant innovative component.

REFERENCES

1. Farenjuk, G.G. (2017). Structure and methodical provisions of the buildings energy performance regulations. *Science and Construction*, 3 (13), 4-15.
2. Farenjuk, G.G. (2008). The heat insulation systems classification by performance and structural characteristics and their thermal properties comparative analysis. *Building materials, products and sanitary equipment*, 1(28).
3. Farenjuk, G.G. (2009). Fundamentals of ensuring the buildings energy performance and envelope structures thermal reliability. Kyiv: Gama-Print.
4. Farenjuk, G.G. (2007). States of the buildings thermal envelope thermal failures and experimental methods for their determination. *Housing Renewal*, 9, 99-106.
5. Farenjuk, G.G., & Oleksienko, O.B. (2013). Thermal deformations of thermal insulation materials used in the facade thermal insulation system with thin-layer rendering. *Building Constructions*, 77, 39-43.
6. Main requirements for buildings and facilities. Energy saving: DBN V.1.2-11-2008. (2008).
7. Heat insulation of buildings: DBN V.2.6-31-2016. (2015).
8. Structures of exterior walls with facade heat insulation. Requirements for design: DBN V.2.6-33:2018. (2018).
9. Structures of exterior walls with facade insulation. Classification and general technical requirements: DSTU B V.2.6-34:2008. (2009).
10. Constructions of buildings and structures. Constructions of outward walls with facade heat-insulation. Guidance on approbation, technical supervision and monitoring: DSTU-N B V.2.6-88:2009. (2010).
11. Constructions of buildings and structures. Constructions of outward walls with facade heat-insulation with stucco facing. General specifications: DSTU B V.2.6-36:2008. (2009).
12. Construction of buildings and structures. Constructions of outward walls with facade heat-insulation and finishing industrial lagging with ventilated air layer. General specifications: DSTU B V.2.6-35:2008. (2009).
13. Curtain walling - Product standard: DSTU B EN 13830:201X (EN 13830:2003 IDT). (2015).
14. Guideline for European technical approval of VETURE kits. Prefabricated units for external wall insulation: DSTU-N B ETAG 017:2013 (ETAG 017:2005, IDT). (2014).
15. Farenjuk, G.G. (2019). The determination of the thermal reliability criterion for building envelope structures. *Technical*

Journal, 13 (2), 129-133.

16. Fareniuk, Ye.G., & Postol, A.S. (2017). The air permeability experimental analysis for the façade structures with an air layer. *Science and Construction*, 1 (11), 10-13.

БІБЛІОГРАФІЧНИЙ СПИСОК

1. Фаренюк Г.Г. Структура та методичні положення нормативної бази з питань енергоефективності будівель. *Наука та будівництво*. 2017, №3 (13). С.4-15.
2. Фаренюк Г.Г. Класифікація систем утеплення за експлуатаційними та конструктивними ознаками та порівняльний аналіз їх теплотехнічних властивостей. *Будівельні матеріали, вироби та санітарна техніка*. 2008, №1(28).
3. Фаренюк Г.Г. Основи забезпечення енергоефективності будинків та теплової надійності огорожувальних конструкцій. К.: Гама-Принт, 2009. 216 с.
4. Фаренюк Г.Г. Стани теплових відмов ізоляційної оболонки будинків та експериментальні методи їх визначення. *Реконструкція житла*, 2007, №9. С.99-106.
5. Фаренюк Г.Г., Олексієнко О.Б. Температурні деформації теплоізоляційних матеріалів, що застосовуються у фасадній системі теплоізоляції з тонкошаровою штукатуркою. *Будівельні конструкції*. 2013, вип.77. С.39-43.
6. ДБН В.1.2-11-2008 «Основні вимоги до будівель і споруд. Економія енергії». К.: Міністерство регіонального розвитку та будівництва України, 2008. Р. 12.
7. ДБН В.2.6-31-2016 [7] «Теплова ізоляція будівель». Київ: Мінрегіон України. 2015. Чинний від 2017-05-01. Р.34.
8. ДБН В.2.6-33:2018 «Конструкції зовнішніх стін з фасадною теплоізоляцією. Вимоги до проектування». 2018.
9. ДСТУ Б В.2.6-34:2008 «Конструкції зовнішніх стін з фасадною теплоізоляцією. Класифікація та загальні технічні вимоги». К.: Міністерство регіонального розвитку та будівництва України. 2009. Р. 12.
10. ДСТУ-Н Б В.2.6 – 88:2009 «Конструкції будинків і споруд. Конструкції зовнішніх стін з фасадною теплоізоляцією. Настанова про технічну апробацію, технічний контроль та моніторинг». Київ: Мінбуд України. 2010. Р.24.
11. ДСТУ Б В.2.6-36:2008. Конструкції будинків та споруд. Конструкції зовнішніх стін з фасадною теплоізоляцією та опорядженням штукатурками. Загальні технічні умови. К.: Міністерство регіонального розвитку та будівництва України. 2009. Р.36.
12. ДСТУ Б В.2.6-35:2008. Конструкції будинків і споруд. Конструкції зовнішніх стін з фасадною теплоізоляцією та опорядженням індустріальними елементами з вентильованим повітряним прошарком. Загальні технічні умови. К.: Міністерство регіонального розвитку та будівництва України. 2009. Р.28.
13. ДСТУ Б EN 13830:201X Фасади навісні. Загальні технічні умови. (EN 13830:2003 IDT). К.: Мінрегіон. Р.55.
14. ДСТУ-Н Б ETAG 017 :2013 Настанова з європейського технічного ухвалення комплектів теплоізоляції. Збірні системи для зовнішньої ізоляції стін (ETAG 017:2005, IDT). Київ: Мінрегіонбуд України, 2014. Р.85.
15. FARENYUK G. The determination of the thermal reliability criterion for building envelope structures. *Technical Journal*. 2019. Vol. 13, No. 2. P.129-133.
16. Фаренюк Є.Г., Постол А.С. Експериментальний аналіз повітропроникності фасадних систем з повітряним прошарком. *Наука і будівництво*. 2017, №1 (11). С. 10-13.

The paper was received on 02.12.2019

Doi: 10.33644/01004

УДК 624.21

OKSEN Y. I.

Doctor of Technical Sciences,
Professor, Leading Researcher,
State Enterprise "The State
Research Institute of Building
Constructions",
Kyiv, Ukraine,
e-mail: eioksen@gmail.com,
tel. +38-050-674-47-78,
ORCID: 0000-0003-1075-6840

EXPERIENCE OF APPLICATION OF VIBROACOUSTIC ANALYSIS TO TESTING OF A REINFORCED CONCRETE BRIDGE ON THE DNISTER RIVER IN ZALISKY VILLAGE

ABSTRACT

A methodology has been developed for the application of vibro-acoustic diagnostics of the technical condition of bridges and their structural elements when carrying out static and dynamic tests of bridges by improving filtering methods and highlighting wavelet transform signal trends.

The object of study is the process of static and dynamic testing of bridges and their structural elements using acoustic emission diagnostics of a technical condition.

The subject of the study is the nature of the development of the process of deformation of reinforced concrete bridge spans under the influence of static and dynamic test loads.

The purpose of the study is to improve the reliability and reliability of the results of static and dynamic tests of bridges using acoustic emission diagnostics of their condition by improving filtering methods and highlighting wavelet transform signal trends. The use of the method of vibro-acoustic emission based on the wavelet transform provides the determination of the characteristics of the formation of acoustic pulses, the determination of the growth and extinction of their amplitudes and the change in frequency characteristics over time. The advantages of using wavelet transform are the possibilities of software implementation of removing noise from the signal and highlighting certain frequency components of the signal as independent components. The equipment for measuring and fixing signals of vibroacoustic emission was developed, which consists of a four-channel recording unit, an external analog-to-digital conversion module, a control laptop, and

a size range of wideband piezoelectric transducers integrated on neodymium magnets. The developed vibroacoustic analysis was tested during static and dynamic tests of a reinforced concrete bridge across the river Dniester on the highway M-12, km 28 + 964 near the village Zaliski. The established values of the oscillation frequency of the run beams is the passport characteristics of the bridge and how the input values are used to assess the degree of wear of the span structure during operation. The developed methodology and equipment for vibro-acoustic diagnosis of the technical condition of bridges and their structural elements are recommended for use in related fields, including for the diagnosis of structures and building structures to be tested.

KEYWORDS: bridge, tests, statics, dynamics, vibroacoustics, equipment, transducer, signal, wavelet transforms, noise, trend, frequency, characteristic.

ДОСВІД ЗАСТОСУВАННЯ ВІБРОАКУСТИЧНОГО АНАЛІЗУ ПРИ ВИПРОБУВАННЯХ ЗАЛІЗОБЕТОННОГО МОСТУ ЧЕРЕЗ РІЧКУ ДНІСТЕР В С. ЗАЛІСКИ

АНОТАЦІЯ

Розроблено методологію застосування віброакустичного діагностування технічного стану мостів і їх конструктивних елементів, при проведенні статичних і динамічних випробувань мостів, шляхом удосконалення методів фільтрації та виділення трендів сигналів вейвлет-перетворенням.

Об'єкт дослідження — процес статичних і

динамічних випробувань мостів і їх конструктивних елементів з застосуванням акусто-емісійного діагностування технічного стану.

Предмет дослідження — характер розвитку процесу деформування залізобетонних прогонових будов мостів під дією статичних і динамічних випробувальних навантажень.

Мета дослідження — покращенні надійності і достовірності результатів статичних і динамічних випробувань мостів застосуванням акусто-емісійного діагностування їх стану, шляхом удосконалення методів фільтрації та виділенням трендів сигналів вейвлет-перетворенням. Використання методу віброакустичної емісії на основі вейвлет-перетворення забезпечує визначення особливостей формування акустичних імпульсів, визначення показників наростання та згасання їх амплітуд і зміну частотних характеристик в часі. Перевагами у застосуванні вейвлет-перетворення є можливості програмної реалізації видалення перешкод з сигналу та виділення певних частотних складових сигналу як самостійних компонентів. Розроблено обладнання вимірювання та фіксації сигналів віброакустичної емісії, яке складається з чотирьохканального блока реєстрації, зовнішнього модуля аналогово-цифрового перетворення, керуючого ноутбука та типорозмірний ряд інтегрованих на неодимових магнітах широкосмугових п'єзоелектрических перетворювачів. Виконано апробацію розробленого віброакустичного аналізу під час проведення статичних і динамічних випробувань залізобетонного мосту через р. Дністер на автомобільній дорозі М-12, км 28+964 біля с. Заліски. Встановлені значення частот коливань балок прогонів є паспортними характеристиками мосту і як вхідні значення призначені для оцінювання ступеню зносу конструкції прогонових будов в процесі експлуатації. Розроблену методику і обладнання віброакустичного діагностування технічного стану мостів і їх конструктивних елементів, рекомендується для застосування в суміжних областях, в тому числі для діагностування споруд і будівельних конструкцій, що підлягають випробуванням.

КЛЮЧОВІ СЛОВА: міст, випробування, статика, динаміка, віброакустика, обладнання, перетворювач, сигнал, вейвлет-перетворення, перешкода, тренд, частота, характеристика.

ОПЫТ ПРИМЕНЕНИЯ ВИБРОАКУСТИЧЕСКОГО АНАЛИЗА ПРИ ИСПЫТАНИИ ЖЕЛЕЗОБЕТОННОГО МОСТА ЧЕРЕЗ РЕКУ ДНЕСТР В С. ЗАЛИСКИ

АННОТАЦИЯ

Разработана методология применения виброакустического диагностирования технического состояния мостов и их конструктивных элемен-

тов, при проведении статических и динамических испытаний мостов, путем усовершенствования методов фильтрации и выделения трендов сигналов вейвлет-преобразованием.

Объект исследования — процесс статических и динамических испытаний мостов и их конструктивных элементов, с применением акусто-эмиссионного диагностирования технического состояния.

Предмет исследования — характер развития процесса деформирования железобетонных пролетных строений мостов под действием статических и динамических испытательных нагрузок.

Цель исследования — улучшение надежности и достоверности результатов статических и динамических испытаний мостов, применением акусто-эмиссионного диагностирования, их состояния путем усовершенствования методов фильтрации и выделением трендов сигналов вейвлет-преобразованием. Использование метода виброакустической эмиссии на основе вейвлет-преобразования, обеспечивает определение особенностей формирования акустических импульсов, определение показателей нарастания и угасания их амплитуд и изменение частотных характеристик во времени. Преимуществами применения вейвлет-преобразования есть возможность программной реализации удаления помех из сигнала и выделения определенных частотных составляющих сигнала в качестве самостоятельных компонентов. Разработано оборудование измерения и фиксации сигналов виброакустической эмиссии, которое состоит из четырехканального блока регистрации, внешнего модуля аналого-цифрового преобразования, управляющего ноутбука и типоразмерный ряд интегрированных на неодимовых магнитах широкополосных пьезоэлектрических преобразователей. Выполнено апробацию разработанного виброакустического анализа при проведении статических и динамических испытаний железобетонного моста через р. Днестр на автомобильной дороге М-12, км 28 + 964 возле с. Залески. Установленные значения частот колебаний балок прогонов являются паспортными характеристиками моста и как входные значения используются для оценки степени износа конструкции пролетных строений в процессе эксплуатации. Разработанная методика и оборудование виброакустического диагностирования технического состояния мостов и их конструктивных элементов рекомендуются для применения в смежных областях, в том числе для диагностирования сооружений и строительных конструкций, подлежащих испытаниям.

Ключевые слова: мост, испытания, статика, динамика, виброакустика, оборудование, преобразователь, сигнал, вейвлет-преобразования, помеха, тренд, частота, характеристика.

INTRODUCTION

Increased weight of vehicles with a total mass of up to 40 t [1], exceeds the designed loads at the time of construction of most road bridges (about 74% [2]), leads to structures intensive wear and reduced service life compared to calculated values. Ensuring traffic safety requires reliable data of the actual load capacity of each bridge and a forecast for its change over time. According to current building codes [3, 4], the most effective means of establishing actual capacity and compliance with design requirements is to test bridges, both new and in service, including periods after reconstruction or major repairs. The relevance of the topic to the road industry in Ukraine is improving reliability of static and dynamic testing results of bridges by acoustic emission diagnostics of their condition.

ANALYSIS OF RECENT RESEARCH AND PUBLICATIONS

Existing methods of static and dynamic [5, 6] tests with acoustic emission diagnostics of the technical condition of bridges allow to establish presence of defects or damages in the structural elements that reduces bearing capacity. Its impact on the load capacity cannot be taken into account in the calculations. The acoustic emission of destruction as a criterion for the condition of an element allows to establish quantitative limit of the step load and provides practical implementation of non-destructive methods of strength control during testing. Due to its ability to identify fracture events at the initial stage of damage, acoustic emission methods are widely used in the monitoring of building structures [7, 8], machines [9–12], and material testing [13]. Acoustic emission waves generated by the release of energy from a localized source or multiple sources within an object during deformation can provide comprehensive information on the defect's origin. The change in the energy radiation intensity over time, depending on the constant or cyclic force, may provide information on development of such a defect. In references [14, 15], a complex approach to the analysis of a broadband signal of radiation of the running structures of elastic waves caused by a dynamic local change in the structure of reinforced concrete and the movement of the object as a mechanical system, with the determination of the state of the bridge by the ratio of acoustic (high-frequency) energy and vibrational (low frequency component) oscillations – that is vibroacoustic emission. The advantage of this approach is the ability to apply the same methodology to the measurement and analysis of signals in both static and dynamic bridge tests.

Measurement and recording of acoustic emission signals during testing, especially in field conditions, is highly complicated due to formation of interferences in electrical circuits because of sufficiently low energy of the acoustic waves themselves. In [16, 17], methods

of overcoming the effect of interference by setting a fixation threshold are presented, but that approaches lead to the loss of acoustic signals information which intensity is close to the intensity of interference.

Insufficient knowledge of the measurement and processing of acoustic and vibration signals prevents the objectivity of determining the condition of bridges and structures.

The object of study is the process of static and dynamic testing of bridges and their structural elements with the use of acoustic-emission diagnostics of technical condition.

The subject of study is the development of the process of deformation of reinforced concrete girder structures by the action of static and dynamic test loads.

The purpose of the study is to improve reliability of the results of static and dynamic testing of bridges by using acoustic emission diagnostics of their condition due to improving methods of filtering and distinguishing trends of wavelet transform signals.

Research Objectives:

- to develop an algorithm for filtering and isolating the signals trends of vibration and acoustic emission by wavelet transformations;
- to develop equipment for measurement and recording of vibroacoustic emission signals for static and dynamic testing of bridges;
- to test the methodology of determining the state of the elements of the bridge structure by the level of vibroacoustic emission signals during static and dynamic testing of bridges.

BASIC MATERIAL AND RESULTS

1. Filtering and highlighting trends and the acoustic component of wavelet transform signals

Fundamental foundations for the use of wavelet transforms were created by I. Dobeshi [18], who formed for the time series S length N the transformation algorithms: direct

$$W = \text{wave}(S) \quad (1)$$

and inverse

$$S = \text{iwave}(W), \quad (2)$$

where the length of the time series S should be $N = \text{length}(S) = 2^P$ and the exponent P must be an integer and is the length of the signal conversion levels

$$P = \frac{\ln(N)}{\ln(2)}. \quad (3)$$

The coefficients vector k_i , as a result of the direct wavelet transform $W_i = k_i$, it makes sense to represent in the form of a matrix with the arrangement on the levels of transformation (rows of the matrix), starting with filling the lowest level

$$\text{coeffs}(Level) = \text{submatrix}(W, 2^{Level}, 2^{Level} - 1), \quad (4)$$

where $Level=0\dots P$ — the level number of the transformation matrix;

$\text{submatrix}(W, ir, jr)$ — a function that rotates a matrix, which alternately consists of rows of vector W elements starting with ir length jr , so the length of each line from the level $Level=1$ is calculated as

$$p_{Level} = \text{length}(\text{coeffs}(Level)) = \frac{2 \cdot TS \cdot N \cdot f_{Level} - 1}{2}, \quad (5)$$

except for the line of the level $Level=0$, for which the length is equal $p_0=2$.

Vibro-acoustic emission signals are fully compliant with time series requirements because they are recorded at a constant sampling rate f and, accordingly, at a constant sampling interval

$$f = \frac{1}{TS}. \quad (6)$$

There is a relationship between the conversion level and the oscillation frequency of a component signal at a certain level.

$$f_{Level} = \frac{2 \cdot p_{Level} + 1}{2 \cdot TS \cdot N}. \quad (7)$$

Joining vectors $\text{coeffs}(Level)$ by rows creates a common wavelet matrix MW . Since the lengths of the signal vectors S and wavelet coefficients W are by definition the same as the number of elements of the wavelet matrix MW and there are algorithms for forward and reverse transformation, wavelet transformation is the process of changing the form of representation of numerical data. The wavelet matrix MW (see Figure 1a) has a triangular shape with the location of the vertex at the bottom and facing directly to its elements requires a change in indexing according to dependence (4). Therefore, to maintain the uniqueness of the values in the matrix MW , we will use element numbering k_i that corresponds to the elements of the vector $W_i = k_i$.

The scheme of arrangement of coefficients at wavelet signal conversion is shown in Figure 1a, for which, for wavelength 3 $T=N \cdot TS$, within the wavelet transform window 1, the coefficients form single wavelets relative to the centers of the intervals within levels 2. It is obvious that the total wavelet waveform will form a three-dimensional signal in the time-frequency plane $t \leftrightarrow Frequency$.

Major Benefits of wavelet conversion practical application are software implementation options:

- removal of noise from the signal;
- allocation of certain frequency components of the signal as separate components.

Since, by definition, interference is a component of a signal with a random amplitude and a random

frequency of realization, in the wavelet transform window (see Figure 1a) the influence of interference will be manifested by a uniform change coefficients k_i values. Thus, setting the noise threshold W_{Noise} , taking into account the influence of the wavelet level, the construction of the wavelet K_{Level} coefficient vector of the noise-free signal can be performed according to the algorithm

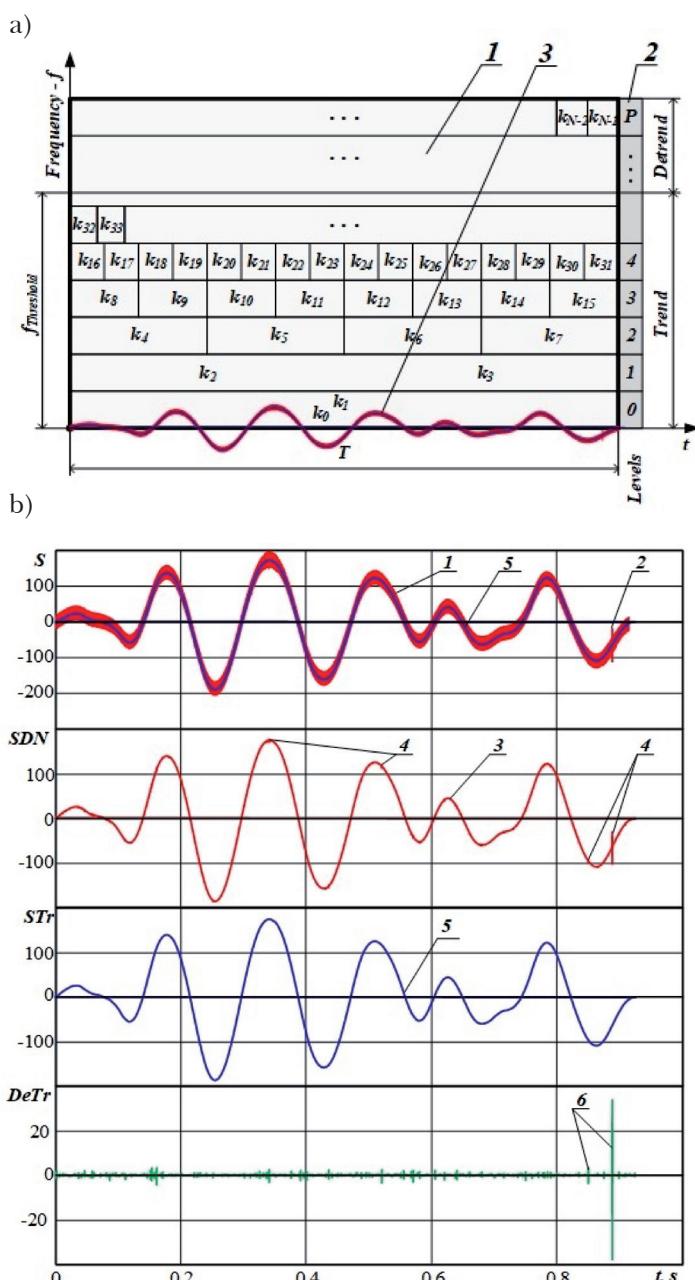
$$WDN_i = \begin{cases} W_i & \text{if } |W_i| \geq |K_{Level} \cdot W_{Noise}| \\ 0 & \text{if } \text{else} \end{cases}. \quad (8)$$

The interference-cleared signal SDN may be recovered from the wavelet reverse vector WDN (2).

The selection of signal components in a certain frequency range as separate components is carried out after setting the signal conversion levels for the given lower f_{Low} and upper f_{High} frequency thresholds in accordance with the dependence (7)

$$p_{Threshold} = \left\lceil \frac{2 \cdot TS \cdot N \cdot f_{Threshold} - 1}{2} \right\rceil. \quad (9)$$

Then the vector of the wavelet coefficients of the frequency components of the signal is plotted against


$$WT_i = \begin{cases} WDN_i & \text{if } p_{Low} \leq p_k < p_{High} \\ 0 & \text{if } \text{else} \end{cases}. \quad (10)$$

The frequency component signal is also restored from the vector WT by reverse wavelet transform (2). A full low frequency component of a signal that is limited in the frequency domain only from above $f_{High} \Leftrightarrow p_{High}$, that is, for which $p_{Low}=0$ is called a signal trend.

An example of processing a fragment of a real vibroacoustic signal S is shown in Figure 1b, where the input is rich in interference, signal 1, on the background of which there is a trend of signal 5, has both low frequency component and acoustic pulses 2. The signal SDN cleared from interference (8) and (2) is characterized by a pronounced low frequency oscillation 3, on the background of which acoustic pulses are developed 4. In the future, the noise-cleared signal SDN according to algorithms (10) and (2) is decomposed into low-frequency component (trend) STr — 5 and high-frequency (acoustic) component of the signal $DeTr$ — 6. Actually, these components of vibroacoustic further you signal used to analyze the state of an object.

2. Equipment for measurement and recording of vibroacoustic emission signals

In accordance with the methodology outlined above, taking into account the benefits of wavelet signal processing, the equipment for measuring

Figure 1 — Schematic diagram of the wavelet transform signal processing

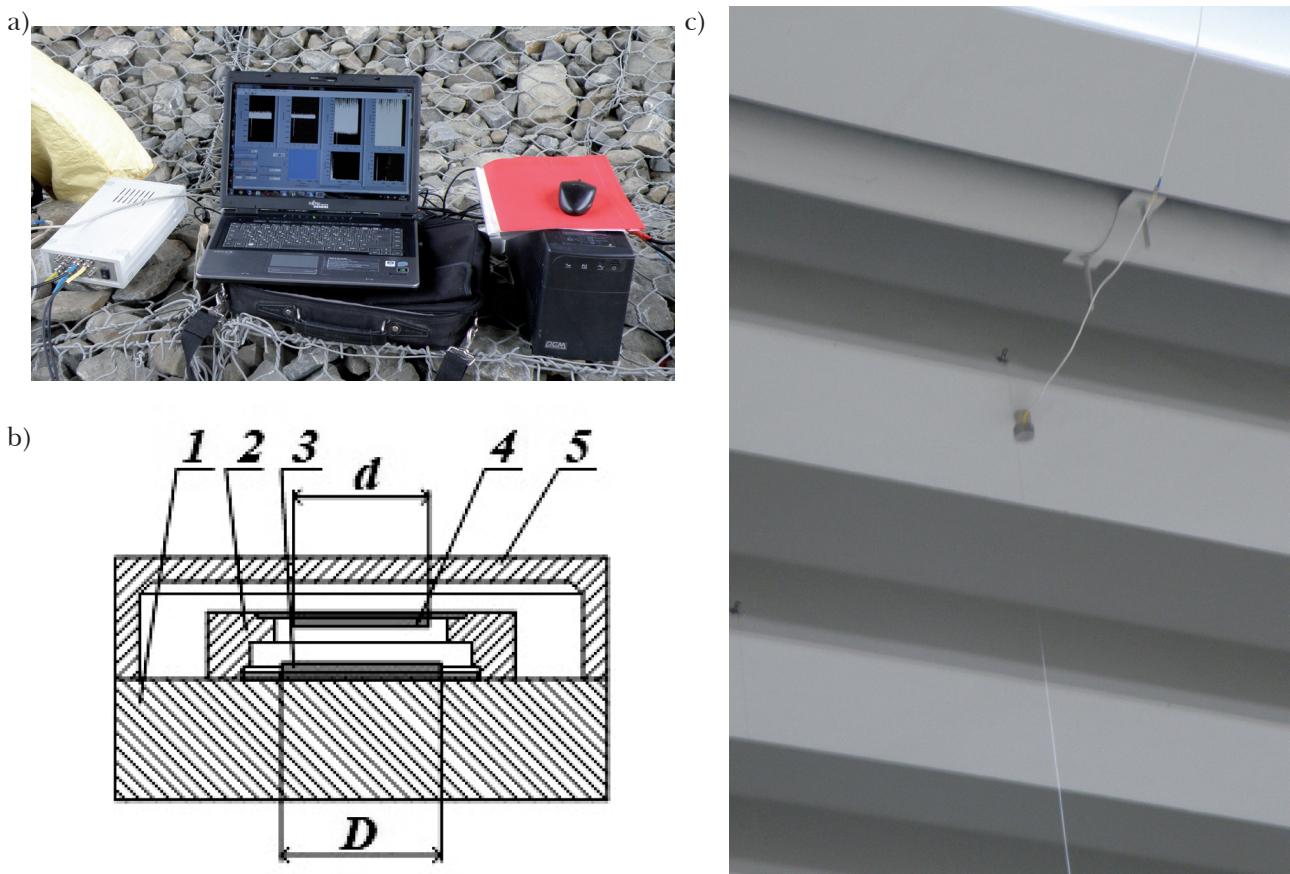
a) scheme of wavelet signal conversion: 1 — wavelet transform window; 2 — levels of transformation; 3 — signal being converted

b) an example of signal processing: 1 — the input vibroacoustic signal; 2 — acoustic pulse; 3 — signal after clearing of noise; 4 — acoustic pulses; 5 — low frequency component (trend) of the signal; 6 — high frequency (acoustic) signal component

and recording of vibroacoustic emission signals was developed. Structurally, the equipment for measuring and recording vibration acoustic signals (Figure 2a) consists of:

- four-channel registration unit, which provides pre-normalized high-precision charge amplifier

CA-2614 with a signal frequency up to 96 kHz;


- an external analog-to-digital conversion (ADC) module ADA-1406 with a polling frequency of 50000 Hz for each channel, which enables the detection of manifestations of signals with a frequency up to 25000 Hz;
- Laptop connect to the ADC via a USB cable.

A schematic diagram of a piezoelectric vibroacoustic emission converter is shown in Figure 2b. The converter consists of a housing that uses a neodymium magnet 1, a sleeve 2, a high-frequency piezoelectric element 3, a low-frequency piezoelectric element 4, which is mounted in a bimorphic manner, and a cover 5. The connecting cable is not conventionally shown. Depending on the ratio of the effective diameters d and D of the elements 3 and 4, the converter is capable of generating vibroacoustic signals of varying intensity in the low-frequency range, which enables rational selection. For application in road test conditions, a standard design series of transducers with numbers 00, 0, 1, 2 and 3 has been developed to record low-frequency vibrations from 0.3 to 60 Hz.

Integration on a neodymium magnet greatly simplifies the installation of the transducer during testing, since retention is only due to the force of gravity to the circuit of the reinforcement through the protective layer of concrete (Figure 2c). Optional magnetic disks may be used to increase weight. To improve the acoustic bond between the transducer and the surface of the reinforced concrete beam, the vaseline No. UA / 8304/01/01 dated 30.11.2018 was used as an acoustically transparent liquid.

In order to increase the reliability of information retention, the measurement results are recorded in a sequence of short files in binary format. The size of a file with is a record of 170 thousand measurements in one channel (approximately 2.6 s) is 262.2 Kbytes. The packages of the measurement results files for each of the tests are subsequently stored in a database and stored on separate archives.

Because the signal sections containing the acoustic activity pulses and vibrations take only a few percent of the measurement program in the total volume of records, they are directed to search, isolate and write to separate files directly. The following fragments of signals when stored and signs of their occurrence: poll number from the beginning of the recording, the frequency of the poll and the signal snippet itself. Examples of file fragments with acoustic pulses and vibrational vibrations are shown in Figure 3.

Figure 2 - Equipment for the recording of vibro-acoustic emission signals

a) measuring equipment; b) schematic diagram of the vibro-acoustic emission converter;
c) attaching the piezoelectric transducer to neodymium magnets

The figure shows the oscillation diagrams in units of a 14-bit ADC, the three-dimensional wavelet image (scalogram) of the signal (see Figure 1a) and its amplitude-frequency response (AFC). Comparison of oscillation diagrams with charts provides an opportunity to determine the nature of the dynamics of the process over time and to track changes in the intensity and frequency of oscillations over time.

The application of the wavelet transform measurement and signal processing set provided in this paper greatly simplifies the static and dynamic testing of bridges.

3. Static and dynamic testing of reinforced concrete bridge using vibroacoustic emission methodology

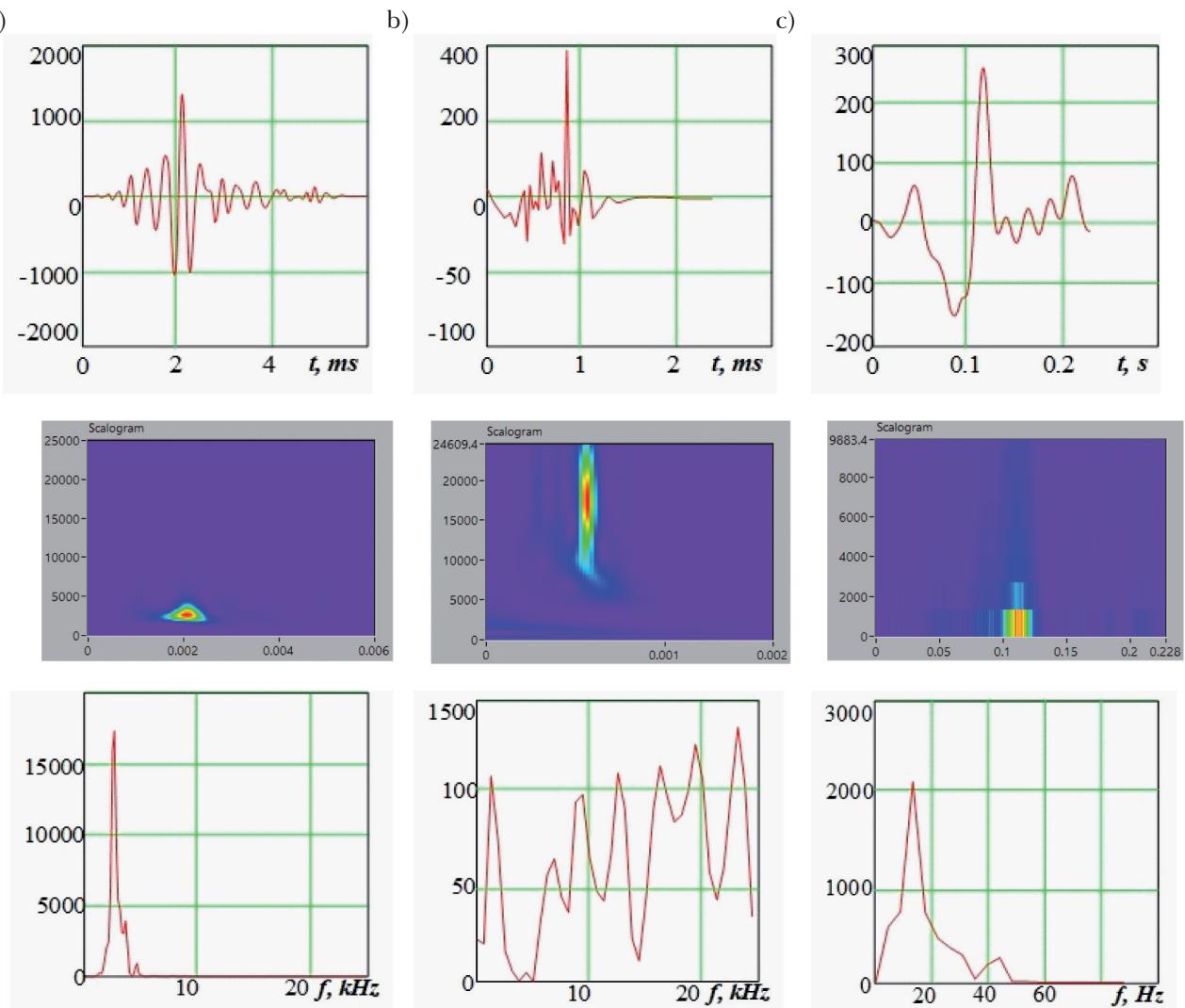
As a test of vibroacoustic analysis, we present the experience of static and dynamic testing of a reinforced concrete bridge. Testing of the bridge over the Dniester River on the national highway M-12 Stryi — Ternopil — Kropyvnytskyi — Znamyanka (through Vinnytsia), km 28 + 964 in the Lviv region (Figure 4) was carried out after reconstruction, the project of which designed under the guidance of the author of the article, included:

- static tests with step load using acoustic emission method according to [5];

- dynamic tests of structures in accordance with [4].

These test methods apply to technical diagnostics of bridges and overpass elements that are on the balance sheet of the State Agency for Highways of Ukraine.

Static tests were carried out for runs No. 1-2 and No. 2-3 and supports No. 3 of supports by step loading of trucks with a total weight of 64 tons (Figure 5). The assessment of the danger of the destruction process in the reinforced concrete beam of the spacer structure at step load according to [5] was carried out according to the criterion of the danger of the development of the destruction process. By this criterion, the value of the exponent was determined by the decision of the step equation


$$E = a \cdot P^b , \quad (11)$$

E - the total value of the accumulated energy of the AE signals during exposure under load at the last and penultimate stages of the load;

P - the value of the load on the running structure at the last and penultimate stages of loading;

a - coefficient of equation.

AE cumulative energy diagrams are calculated as

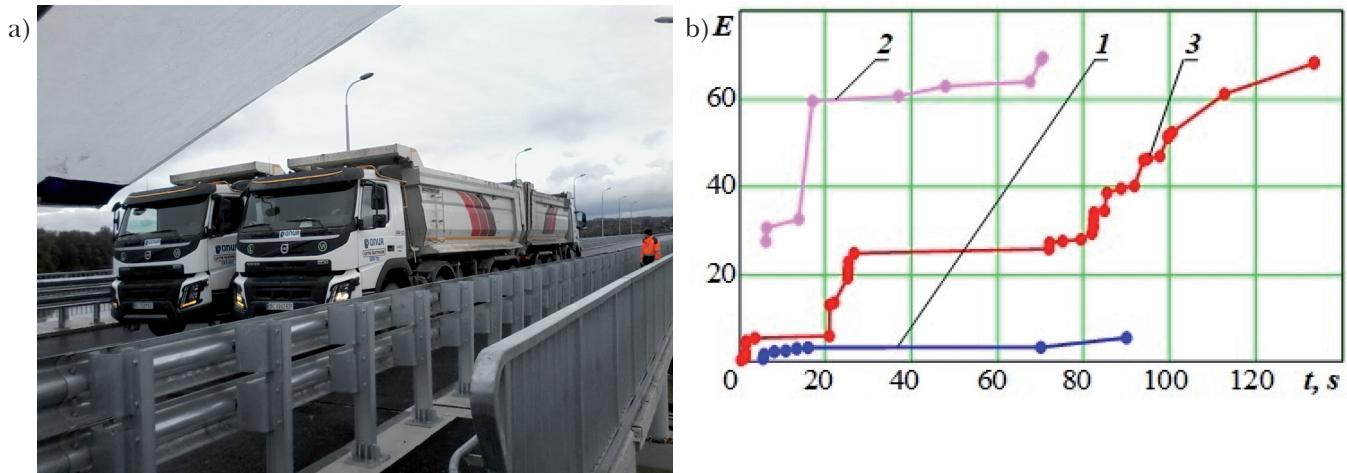
Figure 3 - Fragments of files with vibro-acoustic emission signals

a) an acoustic pulse with a frequency of 2.6 kHz; b) an acoustic pulse with a frequency of 23.7 kHz;
c) vibration pulse with a frequency of 2.52 Hz;

$$E_i = \sum_{k=0}^i |S_{AE_k} \cdot TS|, \quad (12)$$

- scheme 7, diagram 1 (see Figure 5b);
- scheme 8, diagram 2 (see Figure 5b).

The results of the dequation (11) for the data of diagrams 1 and 2 (see Figure 5b) are given in Table. 2.


As evidenced by the results of calculations, the

S_{AE_k} - the current value of the AE signal recorded by the PVA;
 i - number of degree of load (last or penultimate).
Accumulation diagrams of AE energy (Figure 5b) for 6, 7, and 8 schemes of loading of the run structure № 2-3 are constructed to determine the components of equation (11) by the results of measurements. The load circuit 6 of the test No. 2 could not be applied to evaluate the state of the run No. 2-3 and the cumulative energy diagram of AE for it (diagram 3, see Figure 5b) was used to evaluate the condition of the section of the thermally cut back plate above the support No. 3.

Assessment of the beam condition No. 7 of the run structure № 2-3 was performed on the basis of the results of measurements of the cumulative diagrams of AE energy for loading (Table 1):

Figure 4 - General view of the bridge through river Dnister at State Automobile Highway M-12, km 28+964 in Lviv region

Figure 5 - Static tests of the bridge over the Dniester River

a) establishment of a test load; b) diagrams of acoustic emission energy flow over time:
 1 — load of the run No. 2-3 on the left side; 2 — load of run No. 2-3 on the right side;
 3 — load support No. 3

value of the exponent for beam No. 7 of the run structure No. 2-3 at load by scheme 7 is 0.779, and at load by scheme 8 is 1.184. Since in both of these cases the value of the exponent does not exceed 3.0, it should be recognized that defects that develop in the structure of the material of the reinforced concrete beam are not dangerous.

Dynamic tests of the bridge over the Dniester river were conducted by recording the vibroacoustic emission signals in beams No. 7 of runs No. 1-2 and No. 2-3 during the movement of the test trucks and the passage of transport in the intervals between the test loads. The vibration acoustic emission signal transducers determined the characteristics of the vertical oscillations of the central points of the beams No. 7, on the lower surface of which they were installed, by the parameters of the low-frequency component of the signals. Examples of vertical oscillation diagrams and their amplitude-frequency characteristics are not shown in Figure 6 for run No. 1-2 — 1 and run No. 2-3 — 2. The values of oscillation frequencies of runner beams during the passage of transport, which make up for run No. 1-2 — 18.75 Hz, and run No. 2-3, are also determined — 15.17 Hz.

According to standard [4] set values of oscillation frequencies of beams in the course of further

operation, it is recommended to use as input values for estimation of degree of deterioration of structure of run structures.

Test results of a reinforced concrete bridge over the Dniester river in village Zalisky showed, that the use of vibroacoustic analysis allows to determine the peculiarities of the formation of acoustic pulses, indicators of growth and attenuation of their amplitudes and changes in frequency characteristics over time. The set values of the oscillation frequencies of the beams are the passport characteristics of the bridge and as input values are to be evaluated for the degree of wear of the structure during operation.

The practical result of the work is development of algorithms for filtering and isolating the trends of vibration and acoustic emission wavelet transform signals and the equipment for measuring and recording vibration acoustic emission signals for static and dynamic testing of bridges.

The methodology of determining the state of the elements of the bridge structure by the level of vibroacoustic emission signals during static and dynamic tests was shown to improve and reliability of the results, reducing costs and time of tests themselves.

CONCLUSIONS AND PROSPECTS FOR FURTHER DEVELOPMENT

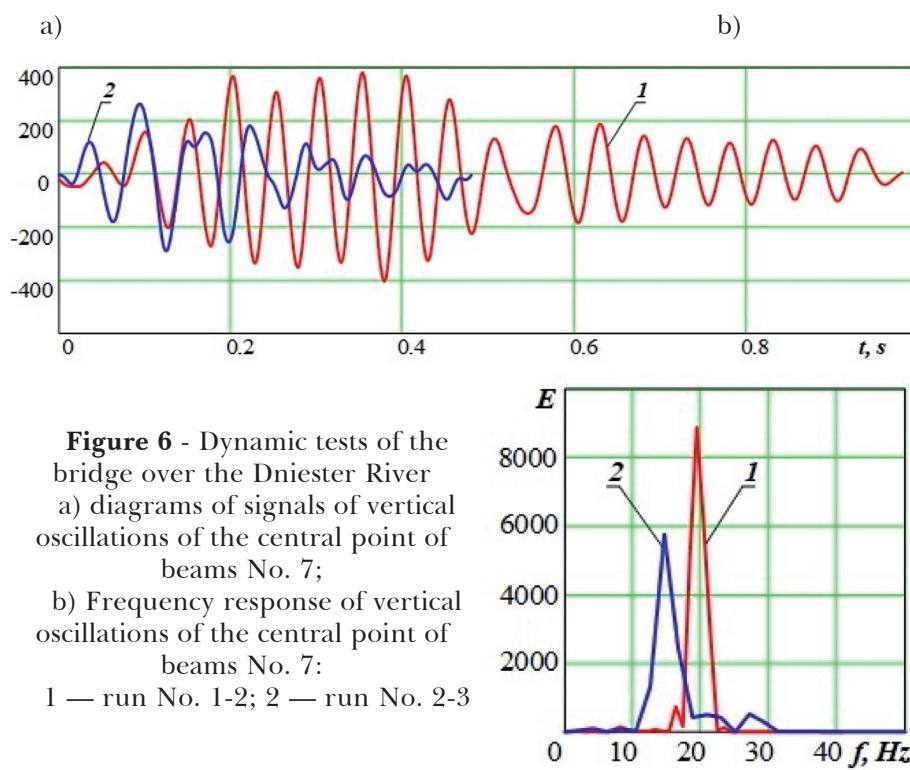

1. Methods of application of vibroacoustic diagnostics of the technical condition of bridges and their structural elements for static and dynamic testing of bridges are developed by means of theoretical and experimental researches by improving the methods of filtering and distinguishing the trends of

Table 1 - Total radiation energy of AEи

Load circuit number	Load option	Number of AE events	The total energy of AE
Support No 3			
6	Four trucks over support No. 3	36	681.26
Run No 2-3, beam No 7			
7	Two trucks over the beam No. 7	9	69.39
8	Two trucks over the beam No. 2	8	5.42

Table 1 - Indicators of the state of the beam No. 7 of the running structure No. 2-3

№№	Options for comparing load schemes	Load, t		<i>a</i>	<i>b</i>
		One truck	Two trucks		
1	Scheme 7	46	92	0.160	0.779
2	Scheme 8	46	92	0.329	1.184

Figure 6 - Dynamic tests of the bridge over the Dniester River
a) diagrams of signals of vertical oscillations of the central point of beams No. 7;
b) Frequency response of vertical oscillations of the central point of beams No. 7:
1 — run No. 1-2; 2 — run No. 2-3

wavelet transform signals. The use of the method of vibroacoustic emission provides the determination of the peculiarities of the formation of acoustic pulses, the determination of the growth and decay of their amplitudes and the change of frequency characteristics over time. The set values of the oscillation frequencies of the beams of the beams are the passport characteristics of the bridge and as input values are to be evaluated for the degree of wear of the structure of the beams during operation.

2. The developed technique of vibroacoustic diagnostics of the technical condition of bridges and their structural elements is recommended for use in adjacent areas, including for the diagnosis of structures and structures to be tested.

БІБЛІОГРАФІЧНИЙ СПИСОК

1. Кабінет Міністрів України. Постанова від 17 вересня 2014 р. № 490 Про внесення змін до постанов Кабінету Міністрів України від 10 жовтня 2001 р. № 1306 і від 27 червня 2007 р. № 879. Київ. ULR: <https://zakon.rada.gov.ua/laws/show/490-2014-%D0%BF?lang=ru>.

2. Роз'яснення Міністерства інфраструктури України для автоперевізників щодо габаритно-вагових норм вантажних перевезень 16 Травня 2016. ULR: <https://mtu.gov.ua/news/26880.html>.

3. Споруди транспорту. Мости та труби. Обстеження та випробування: DBN B.2.3-6:2009. (2010).

4. Настанова щодо проведення динамічних випробувань автодорожніх мостів: DSTU 8748: 2017. (2019).

5. Метод акустичної емісійної діагностики технічного стану мостів для статичних випробувань (MVB 218-03450778-240-2004).

6. Неруйнівний контроль. Акустична емісія. Характеристики устаткування: DSTU EN 13477-2:2016 (EN 13477-2:2010, IDT).

7. Chai M., Zhang Z., Duan Q. A new qualitative acoustic emission parameter based on Shannon's entropy for damage monitoring. Mechanical Systems and Signal Processing. 2018. № 100, P. 617–629. Doi: <https://doi.org/10.1016/j.ymssp.2017.08.007>

8. Behnia A., Chai H.K., Shiotani T. Advanced structural health monitoring of concrete structures with the aid of acoustic emission. Construction and Building Materials. 2014. № 65, P. 282–302.

9. Li X. A brief review: acoustic emission method for tool wear monitoring during turning. International Journal of Machine Tools and Manufacture. 2002. № 42 (2). P. 157–165. Doi: [https://doi.org/10.1016/S0890-6955\(01\)00108-0](https://doi.org/10.1016/S0890-6955(01)00108-0)

10. Schechinger B., Vogel T. Acoustic emission for monitoring a reinforced concrete beam subject to four-point-bending. Construction and Building Materials. 2007. № 21(3), P. 483–490.

11. Buj-Corral I., Alvarez-Flórez J., Domínguez-Fernández A. Acoustic emission analysis for the detection of appropriate cutting operations in honing processes. Mechanical Systems and Signal Processing. 2018. № 99, P. 873–885. Doi: <https://doi.org/10.1016/j.ymssp.2017.06.039>

12. Vicuna C.M., Howeler C. A method for reduction of acoustic emission (AE) data with application in machine failure detection and diagnosis. Mechanical Systems and Signal Processing. 2017. № 97, P. 44–58.

Doi: <https://doi.org/10.1016/j.ymssp.2017.04.040>

13. Baccar D., Soffker D. Identification and classification of failure modes in laminated composites by using a multivariate statistical analysis of wavelet coefficients. *Mechanical Systems and Signal Processing*. 2017. № 96, P. 77–87. Doi: <https://doi.org/10.1016/j.ymssp.2017.03.047>

14. Методи дистанційного моніторингу колійних конструкцій залізобетонних мостів за сигналами віброакустичної емісії (М 03450778-753:2016).

15. Oksen E. Defining the parameters of loading of concrete bridges superstructures basing on the level of vibroacoustic emission signals. *Transportation Research Procedia*. 2016. № 14, P. 3935–3942. Doi: doi: [10.1016/j.trpro.2016.05.485](https://doi.org/10.1016/j.trpro.2016.05.485)

16. Bai F., Gagar D., Foote P., Zhao Y. Comparison of alternatives to amplitude thresholding for onset detection of acoustic emission signals. *Mechanical Systems and Signal Processing*. 2017. № 84, P. 717–730. Doi: <https://doi.org/10.1016/j.ymssp.2016.09.004>

17. Clavijo J., Wang H., Sanchez S. Observation of significant differences between electromagnetic and acoustic emissions during fracture processes: A study on rocks under compression loading. *Journal of Physics: Conference Series* 1386. 2019. P.1–6. Doi: <https://doi:10.1088/1742-6596/1386/1/012107>

18. Daubechies I. *Ten Lectures on Wavelets*. 1992. Pennsylvania: SIAM.

REFERENCE

1. Cabinet of Ministers of Ukraine. (2014). On Amendments to the Resolutions of the Cabinet of Ministers of Ukraine of October 10, 2001 No. 1306 and of June 27, 2007 No. 879. Kyiv. Retrieved from: <https://zakon.rada.gov.ua/laws/show/490-2014-%D0%BF?lang=ru>.

2. Ministry of Infrastructure of Ukraine. Explanation for road haulage operators regarding the size and weight norms of cargo transportation. (2016). Retrieved from: <https://mtu.gov.ua/news/26880.html>.

3. Bridges and pipes. Inspection and testing: DBN B.2.3-6:2009. (2010).

4. Guidance on dynamic testing of road bridges: DSTU 8748: 2017. (2019).

5. Method of acoustic emission diagnostics of the technical condition of bridges in static tests (MVB 218-03450778-240-2004).

6. Non-destructive testing — Acoustic emission — Equipment characterization: DSTU EN 13477-2:2016 (EN 13477-2:2010, IDT).

7. Chai, M., Zhang, Z., & Duan, Q. (2018). A new qualitative acoustic emission parameter based on Shannon's entropy for damage monitoring. *Mechanical Systems and Signal Processing*, 100, 617–629. Doi: <https://doi.org/10.1016/j.ymssp.2017.08.007>

8. Behnia, A., Chai, H.K., & Shiotani, T. (2014). Advanced structural health monitoring of

concrete structures with the aid of acoustic emission. *Construction and Building Materials*, 65, 282–302.

9. Li, X. (2002). A brief review: acoustic emission method for tool wear monitoring during turning. *International Journal of Machine Tools and Manufacture*, 42 (2), 157–165. Doi: [https://doi.org/10.1016/S0890-6955\(01\)00108-0](https://doi.org/10.1016/S0890-6955(01)00108-0)

10. Schechinger, B., & Vogel, T. (2007). Acoustic emission for monitoring a reinforced concrete beam subject to four-point-bending. *Construction and Building Materials*, 21(3), 483–490.

11. Buj-Corral, I., Alvarez-Flórez, J., & Domínguez-Fernández, A. (2018). Acoustic emission analysis for the detection of appropriate cutting operations in honing processes. *Mechanical Systems and Signal Processing*, 99, 873–885. Doi: <https://doi.org/10.1016/j.ymssp.2017.06.039>

12. Vicuna, C.M., & Howeler, C. (2017). A method for reduction of acoustic emission (AE) data with application in machine failure detection and diagnosis. *Mechanical Systems and Signal Processing*, 97, 44–58. Doi: <https://doi.org/10.1016/j.ymssp.2017.04.040>

13. Baccar, D., & Soffker, D. (2017). Identification and classification of failure modes in laminated composites by using a multivariate statistical analysis of wavelet coefficients. *Mechanical Systems and Signal Processing*, 96, 77–87. Doi: <https://doi.org/10.1016/j.ymssp.2017.03.047>

14. Methods for remote monitoring of track structures of reinforced concrete bridges by vibroacoustic emission signals (М 03450778-753:2016).

15. Oksen, E. (2016). Defining the parameters of loading of concrete bridges superstructures basing on the level of vibroacoustic emission signals. *Transportation Research Procedia*, 14, 3935–3942. Doi: doi: [10.1016/j.trpro.2016.05.485](https://doi.org/10.1016/j.trpro.2016.05.485)

16. Bai, F., Gagar, D., Foote, P., & Zhao, Y. (2017). Comparison of alternatives to amplitude thresholding for onset detection of acoustic emission signals. *Mechanical Systems and Signal Processing*, 84, 717–730. Doi: <https://doi.org/10.1016/j.ymssp.2016.09.004>

17. Clavijo, J., Wang, H., & Sanchez, S. (2019). Observation of significant differences between electromagnetic and acoustic emissions during fracture processes: A study on rocks under compression loading. *Journal of Physics: Conference Series* 1386, 1–6. Doi: <https://doi:10.1088/1742-6596/1386/1/012107>

18. Daubechies, I. (1992). *Ten Lectures on Wavelets*. Pennsylvania: SIAM.

The paper was received on 12 Dec 2019.

Doi: 10.33644/01008

УДК 620.193.4:691.32

SHEINICH L.A.

Dr, Prof., Dept. Head, State enterprise "The State Research Institute of Building Constructions", Kyiv, Ukraine, e-mail: schein@ndibk.gov.ua, tel. +38 (044) 248-88-73 ORCID: 0000-0002-7684-9495

MYKOLAIETS M. G.

PhD, Head of laboratory, State enterprise "The State Research Institute of Building Constructions", Kyiv, Ukraine, e-mail: mykolayets@ndibk.gov.ua tel. +38 (044) 224-78-79 ORCID: 0000-0002-8823-3401

KRYLOV E.A.

Lead Engineer, State Enterprise "The State Research Institute of Building Constructions", Kyiv, Ukraine, e-mail: krylov@ndibk.gov.ua tel.: +38 (044) 249-38-41, ORCID: 0000-0001-7944-2132

THE PROBLEMS OF CHEMICAL CORROSION OF CONCRETE ON RAILWAYS OF UKRAINE

ABSTRACT

The types of defects arising in the concrete sleepers on the railway tracks of Ukraine are investigated. It is established that the causes of cracks can be both permanent dynamic loads and the destruction of concrete due to alkali corrosion. The most common cases are the combined action of loads (occurrence of force cracks), corrosion (development of cracks) and freezing of water under the action of low temperatures. It is known that gel is generated during the chemical interaction between the various forms of silicic acid, which is differently contained in the fillers of different types, solutions of alkali metal hydroxides, which fill the pores of the matured concrete and alkali penetrating from the outside. Such a newly formed structure is able to absorb water and increase in volume, and thus leads to the formation of microcracks in the concrete and, eventually, the destruction of the concrete. Chemical microscopic examinations of aggregates and cement were carried out for the concrete aimed for sleepers. Studies showed that cements of Ukrainian production had an excessive content of alkaline component. Based on the obtained results, recommendations are given to reduce the content of alkaline component in concrete. Microscopic studies of concrete showed that alkaline corrosion occurred more intensively in the

sleepers made before 2010 than in the sleepers made after 2010. This is due to the fact that manufacturers of sleepers began to monitor constantly the content of alkaline component and amorphous silica in aggregates and cement. In this case, the amount of gel is already insufficient for destruction of concrete in its pure form as a result of alkaline corrosion, but still sufficient to accelerate the opening of force cracks due to corrosion of concrete. This again leads to the formation of a complex effect of various harmful factors on the concrete, which destroy sleepers.

To reduce the alkaline corrosion of concrete, certain steps must be taken such as to introduce plasticizing additives that reduce the amount of cement and, accordingly, the number of soluble alkalis, to use additives that bind alkalis - slag, ash, etc., or to apply III PC / A-W cement with the content of granulated slag up to 20% and to carry out an input control of each batch of aggregate in order to determine harmful substances and availability of alkalis.

KEYWORDS: concrete, aggregate, corrosion, alkali, silicate, crack, sleepers

ПРОБЛЕМИ ВИНИКНЕННЯ ХІМІЧНОЇ КОРОЗІЇ БЕТОНУ НА ЗАЛІЗНИЧНИХ ШЛЯХАХ УКРАЇНИ

АННОТАЦІЯ

Досліджено види дефектів, що виникають в залізобетонних шпалах на залізничних шляхах України. Встановлено, що причинами виникнення тріщин можуть бути як постійні динамічні навантаження, так і руйнування бетону внаслідок протікання лужної корозії. Найпоширенішими випадками є комбінована дія навантажень (виникнення силових тріщин), корозії (розвиток тріщин) та замерзання води під дією низьких температур. Відомо, що під час хімічної взаємодії між різними формами силікатної кислоти, яка в різній мірі міститься в заповнювачах різних видів, та розчинами гідрооксидів лужних металів, якими заповнені пори бетону, що затверднув, а також із лугами, що проникають ззовні, утворюється гель. Таке новоутворення здатне поглинати воду і збільшуватись в об'ємі і таким чином призводить до утворення мікротріщин в бетоні та, з часом, до руйнування бетону. Проведено хімічні, мікроскопічні дослідження заповнювачів та цементу для бетону шпал. Дослідження показали, що цементи українського виробництва мають завищений вміст лужної складової. На основі отриманих результатів надано рекомендації по зменшенню вмісту лужного компоненту в бетоні. Мікроскопічні дослідження бетону показали, що у шпалах, виготовлених у 2010 році, лужна корозія протікає інтенсивніше, ніж у шпалах, що виготовлені після 2010 року. Це пов'язано з тим, що заводи-виробники шпал почали постійно контролювати вміст лужного компоненту та аморфного кремнезему в заповнювачах та цементах. В цьому випадку кількості гелю вже недостатньо для руйнування бетону в «чистому вигляді» як результат лужної корозії, але достатньо щоб прискорювати розкриття силових тріщин за рахунок корозії бетону. Це в свою чергу призводить до утворення комплексного впливу різних шкідливих чинників на бетон, які руйнують шпали.

Для зниження масштабів лужної корозії бетону необхідно виконати певні заходи: вводити пластифікуючі добавки, що зменшують кількість цементу, і відповідно – кількість розчинних лугів, застосовувати добавки, що зв'язують луги – шлаки, золи і т.п., або застосовувати цемент марки ПЦ II/A-Ш з вмістом гранульованого шлаку до 20%, проводити вхідний контроль кожної партії заповнювача по визначеню шкідливих речовин, наявності лугів в цементі.

КЛЮЧОВІ СЛОВА:бетон, заповнювач, корозія, луг, силікат, тріщина, шпала

INTRODUCTION

As a result of the work of special commission in 2018-2019, it was found that the railways of Ukraine showed an unsatisfactory condition of concrete sleepers. Inspections of sleepers of various production

years revealed defects in the form of cracks, which eventually led to the destruction of the product. The cracks were of various types from transverse to longitudinal ones and cracking.

This condition of concrete sleepers has led to the need in special physical and chemical studies of concrete to determine the causes of cracks and corrosion of concrete.

ANALYSIS OF RECENT RESEARCH AND PUBLICATIONS

It is known [1] that in case if reactive aggregate and alkali are available in the composition of concrete, alkaline corrosion occurs in the concrete and it is demonstrated by destruction of concrete after 1-2 years of operation in wet conditions.

Reaction between alkalis and silicic acid refers to chemical reaction between the various forms of silicic acid ($\text{SiO}_2 \text{ nH}_2\text{O}$) which is contained in the aggregates and the solutions of alkali metal hydroxides (NaOH , KOH) that fill pores of the matured concrete and alkali penetrating from the outside. The gel resulting from these reactions is able to increase in volume due to water absorption and leads to the destruction of concrete [1].

The reaction between alkalis and silicic acid contained in certain types of rocks is described in the works of Stanton [2], God [3], Kyul [4]. Such reactions are accompanied by the formation of gel-like products that are able to increase in volume and that is a sign of alkaline corrosion. This type of corrosion refers to the corrosion of the second type i.e. chemical.

PROBLEM DEFINITION

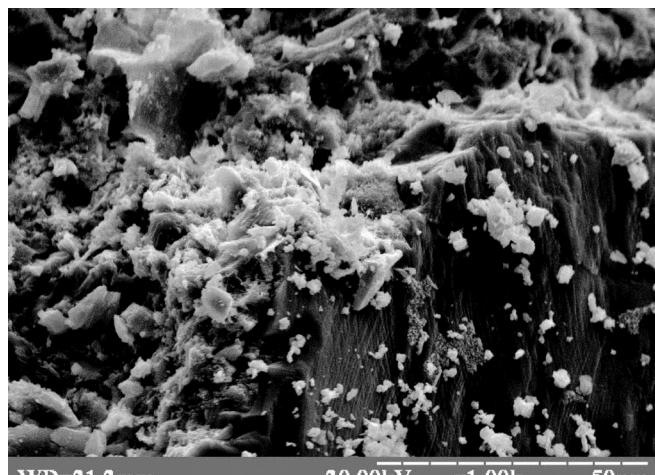
The actual task is to conduct a survey of concrete sleepers produced by Ukrainian manufacturers, to conduct physical and chemical studies of concrete and aggregates, to determine the cause of destruction of sleepers.

MAIN PART

In 2012, in Research Institute for Building Constructions (NIISK), L. Sheinich and I. Ignatova conducted research on raw materials that had been used thus far and suggested measures on how to prevent alkaline corrosion, which occurred in the products of this manufacture. In particular, it was proposed to use aggregate with a lower content of alkali in terms of Na_2O equivalent as well as amorphous silica, it was suggested to set a limit of alkali content of 0.6% for cement, to introduce additives that bind alkali and to reduce the amount of cement.

Today the manufacturers use cement in which the minimum content of the alkaline component is about 0.8% in terms of Na_2O equivalent.

In studies of small aggregate it was established that the content of amorphous silica varied depending on


the batch and the supplier and did not exceed the requirements set in DSTU B B.2.7-32 [6].

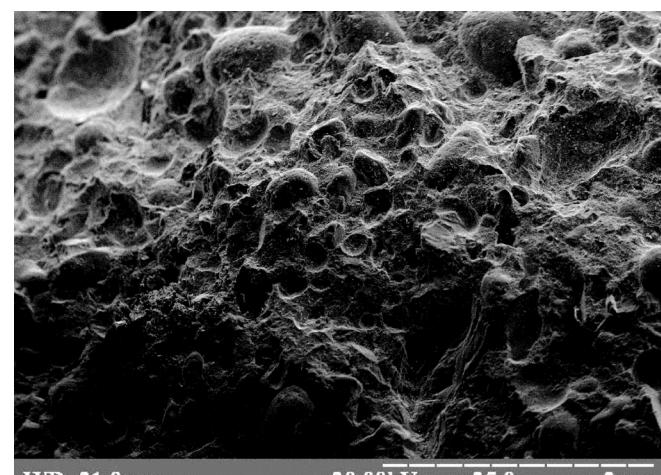
The alkali content does not exceed the requirements specified in [6]. Compounds of amorphous silica in large aggregate were not found.

In 2010, a number of studies was carried out by the sleeper fabrication plants in order to define the reactivity of large aggregate with alkali contained in cement. According to these studies, crushed stone was considered not reactive with alkali. This has been also confirmed by testing aggregate with the method used to measure linear deformations.

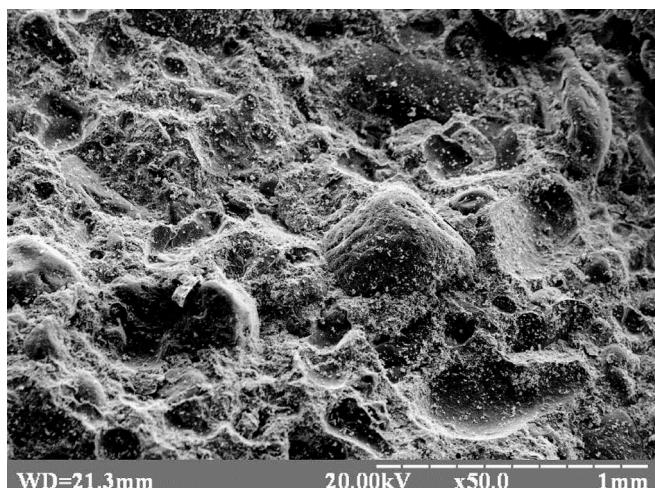
The research with electron microscope has covered the microstructure of the cement stone of 3 samples of concrete that were taken from concrete sleepers manufactured by the same plant in 2010, 2017, and 2019. The newly formed structures were identified according to the data [1, 7-10].

Analysis of the micrograph of the material of sleepers 2019, shown in Figure 1 shows that cement

Figure 1 – Amorphized hydrated cement stone


stone has mainly the amorphous hydrate structure formed as a result of the cement hydration.

In Figure 2, there are minor spherical formations which according to [1] can be identified as alkaline-silicate gel, which proves alkaline corrosion of concrete. The presence of alkaline corrosion can reduce bear capacity of sleepers and accordingly contribute to transverse force cracks. A small amount of alkaline gel in concrete indicates that raw materials (aggregate) contain trace of amorphous silica and cement with extended amount of soluble alkalis.


Figures 3 and 4 show micrographs of cement stone taken from a sleeper produced in 2017.

Analyzing the microstructure of cement stone taken from concrete of sleepers produced in 2017, it can be noted that the number of granules of alkali-silicate gel has increased compared to that in concrete sleepers produced in 2019 (Figure 3). This indicates that the alkaline corrosion of concrete evolves over time.

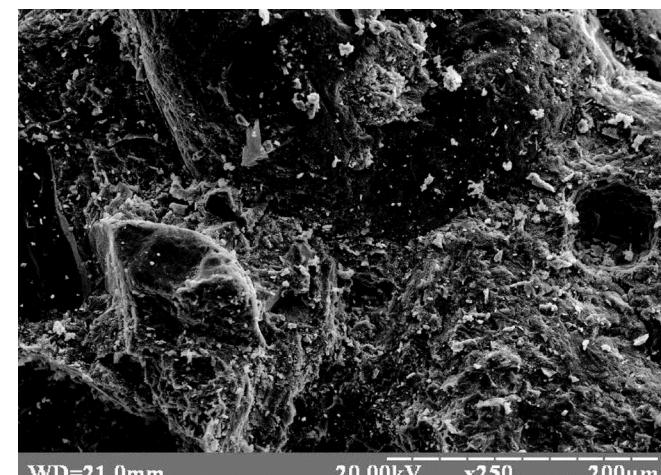

Figure 4 shows that the microstructure of the

Figure 3 – Micrograph of cement stone taken from a sleeper produced in 2017

Figure 2 – Cement stone with speckles of alkali-silicate gel

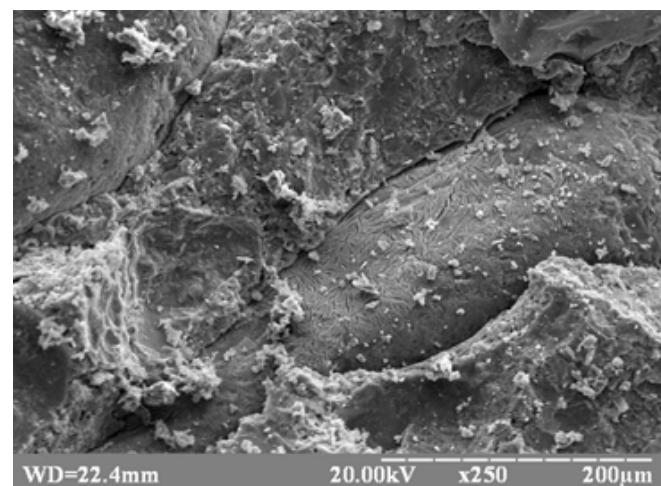
Figure 4 – Micrograph of cement stone with microcracks taken from the sleeper produced in 2017

cement stone is represented by the hydrated cement and has microcracks which have to reduce the durability of concrete.

Looking at the photo of a sleeper produced in 2017 (Figure 5), it can be noted that there are transverse cracks of the sleeper concrete which occur in high power load. This means that the significant cracks in sleepers, which could be attributed to the cracks resulting from alkaline corrosion are not found. The amount of gel is already insufficient for the destruction of concrete in its pure form as a result of alkaline corrosion, but still enough to initiate force cracks due to corrosion of concrete. This in turn leads to the formation of a comprehensive effect of various harmful factors on the concrete which destroy sleepers.

Figures 6 and 7 are micrographs of cement stone taken from sleepers produced in 2010. This sleeper was manufactured at the plant prior to

the optimization of production process aiming at prevention of alkaline corrosion [5, 11].


Analyzing the microstructure of the cement stone given on Figure 6, one can observe that the number and size of granules of alkaline-silicate gel has increased in comparison to the the amount of gel in the sleepers produced in 2017. The microstructure of cement stone given in Figure 7 is presented by hydrated cement and provides microcracks which are expected to ruin the concrete. The size of the gel granules have increased even more. The amount of alkaline-silicate gel is enough to bring to the deterioration of concrete attributed to alkaline corrosion (Fig. 8).

Thus, the research has found that alkaline corrosion occurs in the concrete of sleepers. Its intensity is less than it was before due to the optimization of technology in 2010-2011. [5, 11].

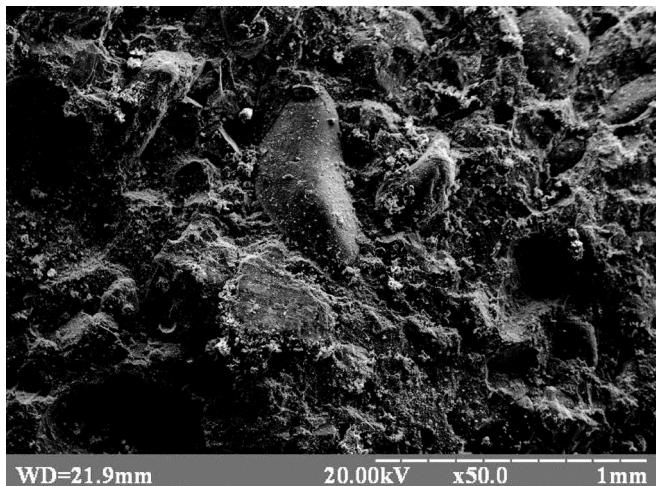

The content of alkali in Ukrainian cement of I

Figure 5 – Cracks within concrete sleeper

Figure 7 – Micrograph of cement stone with concrete microcracks taken from the sleeper produced in 2010

Figure 6 – Micrograph of cement stone taken from a sleeper produced in 2010

Figure 8 – Cracking on the sleeper produced in 2010

type, M500, normalized composition exceeds the allowable value of 0.6% [12] according to the data of Association of Ukrainian Cement in 2019 and this is the reason why it is necessary to introduce mineral admixtures in concrete and to fix alkali into insoluble how it is recommended in [5,11]. These admixtures can be aluminosilicate substances, for example slag, ash. This technological solution is confirmed by the content of paragraph 5.11 [12].

Slag admixture can be introduced in cement willing and this will simplify the technology of concrete, this means the application of cement of grade PC II / A-W with a content of granular slag up to 20% while maintaining the quality of concrete according to [13]. Such a positive solution will not only reduce the alkaline corrosion of concrete due to the interaction of cement slag with alkali and the formation of insoluble [1] but also contribute to lowering of prime costs.

CONCLUSIONS

1. It is established that all concrete sleepers produced within the period from 2004 to 2012 showed intensive alkaline corrosion of concrete. In sleepers manufactured from 2017 to 2019 defects are associated with force loads and transverse cracking. The crack width increase with time. As water gets into cracks and freezes in winter, it breaks the concrete. The crack width grows and the process of concrete deterioration promotes. In due time, cracks occur and it is already characteristic to corrosion of concrete. Thus, the prevention of the destruction of sleepers is associated with the solution of a comprehensive problem, which covers the following issues: load applied to sleepers, their operation conditions, design of sleepers and their manufacturing technology (including the prevention of alkaline corrosion).
2. As a result of the research work, a number of measures to prevent alkaline corrosion of concrete was suggested. Concrete-making facilities have taken some measures to reduce alkaline corrosion of concrete, but not in full. The steps have been mainly taken towards the control of input raw materials. If the amount of harmful substances in the aggregates does not exceed the allowable values, then the amount of soluble alkali in the cement made in Ukraine varies considerably and can be within the permissible limits [12] and exceed those reaching more than 1%.
3. Electron microscope studies have shown that the presence of soluble alkali in cement and amorphous silica in aggregates bring to the formation of alkali-silicate gel, which provokes alkaline corrosion of concrete. It should be noted that the control and selection of good

aggregates reduces the size and intensity of alkaline corrosion.

4. To reduce the size of alkaline corrosion of concrete, some certain steps should be taken such as introduction of plasticizing additives that reduce the amount of cement and, accordingly, the number of soluble alkali, use of additives that bind alkali like slag, ash, etc., or application of cement of grade PC II / A-W containing granular slag up to 20% according to [13]. Applying crushed stone of several fractions will also help reduce the consumption of cement with excess reactive alkali. It is necessary to carry out an input control of each batch of aggregate to determine the harmful substances and alkali in cement.

БІБЛІОГРАФІЧНИЙ СПИСОК

1. Штарк, Й., Тулаганов, А. (Пер.), & Кривенко, П. (Ред.). Щелочная коррозия бетона: Монография. (2010). Киев.
2. Stanton, T.E. (1940). Expansion of concrete through reaction between cement and aggregate. Proceedings of the American Society of Civil Engineers, 66 (10), 1781-1811.
3. Bogue, R.H. (1952). The chemistry of Portland cement. New York: Reinhold Publishing Co.
4. Kühl, H. (1951). Die Erhartung und die Verarbeitung der hydraulischen Bindemittel. Zement-Chemie (Bd. 3). Berlin: Verlag Technik.
5. Висновок щодо встановлення впливу оптимізованої технології виготовлення шпал на їх довговічність: Висновок за результатами випробувань. Київ: ДП НДІБК, 2012. 81 с.
6. ДСТУ Б В.2.7-32-95 Пісок щільний природний для будівельних матеріалів, виробів, конструкцій і робіт. Технічні умови. [Чинний від 01.01.1996] Вид. офіц. Київ, 1996. 17 с.
7. Штарк Й., Вихт Б. Цемент и известь, Ин-т строительных материалов им. Ф.А. Фингера. Баухаус-Университета, Ваймар. Киев, 2008, 480 с.
8. Горшков В.С., Тимашев В.В., Савельев В.Г. Методы физико-химического анализа вяжущих веществ, М: «Высшая школа», 1981. 335 с.
9. Минералогические таблицы. Справочник / под ред. Е.И. Семенова. М: «Недра», 1981. 399 с.
10. ДСТУ Б В.2.7-75-98 Щебінь та гравій щільні природні для будівельних матеріалів, виробів, конструкцій і робіт. Технічні умови. [Чинний від 01.01.1999] Вид. офіц. Київ, 1999. 15 с.
11. Проведення досліджень по встановленню причин руйнування залізобетонних

шпал та розробка рекомендацій по підвищенню міцності бетону: Звіт про науково-дослідну роботу. Дніпропетровськ: Дніпропетровський національний університет залізничного транспорту ім. академіка В. Лазаряна, 2011.

12. DSTU B В.2.6-209:2016 Шпали залізобетонні попередньо напружені для залізниць колії 1520 і 1435 мм. Технічні умови. [Чинний від 01.01.2017] Вид. офіц. К., 2017.

13. DSTU B В.2.7-46:2010 Будівельні матеріали. Цементи загальнобудівельного призначення. Технічні умови. [Чинний від 01.09.2011] Вид. офіц. К., 2011. 14 с.

REFERENCES

1. Stark, J., Tuluhanov, A. (Tr.), & Krivenko P. (Ed.). (2010). Alkali-Kieselsaure-Reaktion. Kyiv.
2. Stanton, T.E. (1940). Expansion of concrete through reaction between cement and aggregate. Proceedings of the American Society of Civil Engineers, 66 (10), 1781-1811.
3. Bogue, R.H. (1952). The chemistry of Portland cement. New York: Reinhold Publishing Co.
4. Kühl, H. (1951). Die Erhartung und die Verarbeitung der hydraulischen Bindemittel. Zement-Chemie (Bd. 3). Berlin: Verlag Technik.
5. Conclusions on determining the optimized sleeper manufacturing technology influence on their durability: Conclusions based on the test results. (2012). Kyiv: SE NDIBK.
6. Building materials. Dense natural sand for building materials, products, structures and construction works. Specifications: DSTU B В.2.7-32-95. (1996).
7. Stark, J., Wicht, B., & Krivenko, P. (Ed.). (2008). Zement und Kalk. Kyiv.
8. Gorshkov, V.S., Timashev, V.V., & Saveliev, V.G. (1981). Methods of physical and chemical analysis of binding materials. Moscow: «Vysshiaia shkola».
9. Semenov, E.I. (Ed.). (1981). Mineralogical tables. Directory. Moscow: Nedra.
10. Building materials. Solid natural crushed stone and gravel for building materials, products, structures and construction works. Specifications: DSTU B.V.2.7-75-98 (1999). Kyiv.
11. Carrying out studies on the determination of the reinforced concrete sleepers destruction causes and development of the recommendations for the concrete strength increasing: Research Report. (2011). Dnipropetrovsk: Dnipro National University of Railway Transport named after Academician V. Lazaryan.
12. Prestressed reinforced concrete sleepers for 1520 and 1435 mm gauge railways.

Specifications: DSTU B.V.2.6-209:2016 (2017).

13. Building materials. Common cements. Specifications. Specifications: DSTU B.V.2.7-46:2010. (2011).

The paper was received by Editorial office on 16 December 2019

Doi: 10.33644/01005

УДК 624.046.3.:624.014.27.:624.074.4:725.36

LISENYI O.M.

PhD in Eng., Head of Department, State Enterprise "The State Research Institute of Building Constructions", Kyiv, Ukraine, e-mail: lab343@ndibk.gov.ua tel. +38(044) 249-37-66 ORCID: 0000-0003-0792-8082

LIUBCHENKO I.H.

PhD in Eng., Assoc. Professor, State Enterprise "The State Research Institute of Building Constructions", Kyiv, Ukraine, e-mail: i.lubchenko@ndibk.gov.ua tel. +38 (097) 494-13-45 ORCID: 0000-0002-3329-4725

SLYUSARENKO, Yu.S.

PhD in Eng., Senior Researcher, Deputy Director for Scientific Work, State Enterprise "The State Research Institute of Building Constructions", Kyiv, Ukraine, e-mail: slus@ndibk.gov.ua tel. +38(044) 249-38-83 ORCID: 0000-0002-0447-3927

STEEL CIRCULAR SILOS FOR GRAIN

ABSTRACT

In Ukraine the thin-walled steel silos for grain storage have been erected by the domestic and foreign producers. Silos for grain have the complicated structural system, the basic constituents of which include the cylindrical body of corrugated steel sheets supported by vertical and circular ribs, and the conical roof of flat steel sheets on bent sheets beams. The silo body is a cylindrical orthotropic shell and its design peculiarities are not sufficiently revealed in national regulations. The European codes contain more detailed recommendations for the modern steel silos design with regard to both the design technological loads determination and the bearing strength calculations. However, being practically applied for computing the silos strength and stability, the Eurocodes create a number of substantial problems. During the operation of silos built in recent year the accidents frequently occur reflecting the design and operation shortcomings.

In NDIBK the improvement of steel silos design methodology has been carried out with the adaptation of some approaches implemented in the EU codes and under observance of general conformity to the building norms of Ukraine. The equivalent membrane properties and equivalent

bending properties of corrugated sheets, including tensile stiffness and bending stiffness, respectively, are determined. Based on these properties the equivalent moduli of elasticity are found for the orthotropic shell finite elements by two mutually perpendicular directions of shell surface. The necessity is justified for the preproduction models and full-scale objects experimental studies and researches with an aim of determining the resistance specifications of multi-bolt joints of the shell galvanized corrugated sheets. The attention is drawn to the fact that the application of friction connections with small diameter bolts promotes the long-term reliable operation of the silos, but for their use ensuring the national building regulations shall be improved. The mechanical and deformation specifications of corrugated profiles require an experimental verification as well.

KEY WORDS: Steel silo, silos destruction, corrugated sheet, orthotropic shell, strength, bolt joints

СТАЛЕВІ ЦИЛІНДРИЧНІ СИЛОСИ ДЛЯ ЗЕРНА

АНОТАЦІЯ

В Україні тонкостінні сталеві силоси для

зберігання зерна зводяться вітчизняними та закордонними виробниками. Силоси для зерна мають складну конструктивну систему, основними складовими якої є циліндричний корпус з гофрованого сталевого листа, підкріплений вертикальними і кільцевими ребрами, та конічний дах з плоского сталевого листа на балках з гнутого листа. Корпус силосу є циліндричною ортотропною оболонкою, особливості проектування якої у вітчизняних нормах розкриті недостатньо. Європейські норми містять більш детальні рекомендації з проектування сучасних металевих силосів як у частині визначення розрахункових технологічних навантажень, так і щодо розрахунків несучої здатності, однак при практичному застосуванні Євронорм при розрахунку міцності і стійкості силосів виникає ряд суттєвих проблем. При експлуатації збудованих в останні роки силосів мають місце непоодинокі аварії, в яких проявляються недоліки проектування та експлуатації.

В НДІБК здійснено удосконалення методики розрахунку сталевих силосів з адаптацією окремих підходів, прийнятих у нормативних документах ЄС, при дотриманні загальної відповідності нормам України. Визначені еквівалентні мембранині властивості гофрованого листа – жорсткість на розтяг, та еквівалентні згинальні властивості – жорсткість на згин, за якими визначені еквівалентні модулі пружності для скінченних елементів ортотропної оболонки за двома взаємно перпендикулярними напрямами поверхні оболонки. Обґрунтована необхідність проведення експериментальних досліджень на дослідних зразках і натурних об'єктах та досліджень з метою визначення характеристик опору багатоболтових з'єднань гофрованих оцинкованих листів оболонки. Звернута увага, що застосування фрикційних з'єднань на болтах малих діаметрів сприяє довготривалій надійній роботі силосу, але їх використання потребує удосконалення національних будівельних норм. Також потрібують експериментальної перевірки механічні та деформаційні характеристики гофрованих профілів.

КЛЮЧОВІ СЛОВА: сталевий силос, руйнування силосів, гофрований лист, ортотропна оболонка, міцність, болтові з'єднання.

THE GRAIN SILOS DESIGN AND OPERATION

From time to time the grain silos destructions occur. Only in 2018 there were some such cases. Roman Shtelmach, the Technical Director of KMZ Industries, points out a broad enough list

of silos destruction causes: from the design stage errors to malfunctions or due to production defects to force majeure [1]. He notes that the selection of equipment that does not meet the operation site and conditions requirements, the design errors or manufacturing defects (mismatch of construction or design documentation) become evident immediately after the object commissioning. And when the silo operates more than one year, the most probable causes of its "collapse" are the human factors.

Reviewing the statistics of the silo accidents causes, Anatolii Butenko, the Director of Trans Stroy Complex, points out that among the accidents causes the unsuccessful design solutions occupy 25.1% and the design rules defects - 4.0% [2].

The foreign production silos do not always meet the operation conditions in Ukraine taking into account the local climatic conditions. The designers of Ukraine mainly adapt the existing ready technological projects developed in the USA or Europe. In such cases, the silos designing intricacies remain largely unknown, and their strength calculation is a trade secret.

As site <https://inshe.tv/nikolaev/2017-08-16/256604/> reported [3], at the Kostiantyniv elevator having the grain storage total volume of 100 000 tons (Figure 1) in two months after erection on 16.08.2017 one of the Turkish production silos was deformed and destructed (Figure 2).

A commission with the involvement of the enterprise, design organizations, installation companies and manufacturing plant representatives was convened at the enterprise to establish the accident cause.

The newspaper (<https://www.2000.ua/08/16/2017>) posted a video that traces the silo destruction nature as an important full-scale experiment (Figure 3).

A number of reasons mainly causes accidents. The problem of silos crashes preventing relates not only to the representatives of the company, design and installation companies and silos manufacturers. This is a state problem, because the foreign manufacture silos must be checked by calculations for compliance with national construction standards.

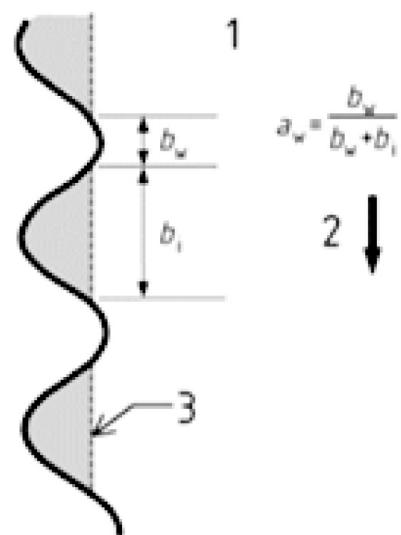
Accidental situations result from using the simplified

Figure 1 - Kostiantyniv elevator for grain storage

Figure 2 - Grain silo destruction consequences

Figure 3 - Segment of video recording the silo deformation and destruction beginning

silos calculation methods, which do not fully reflect the silo design features and do not exhaustively assess the members bearing capacity. The durability, reliability and safety of silos operation can be ensured only through the actual operation studies and the improvements of the grain storage facilities design standards.


The design of grain storage facilities, including the metal silos, is governed by the code DBN V.2.2-8-98 [4], which does not envisage the use of thin-walled corrugated profiles for the silo body erection. From 01.07.2013 the standard DSTU-N B EN 1991-4:2012 [5] is in force in Ukraine. It contains the general principles and guidelines regarding the actions determination for calculating the bulk materials storage structures, including the grain storage steel silos. This standard shall be applied in conjunction with a number of DSTU-N B EN status standards, i.e. the silos must be designed according to European standards. The DBN V.2.2-8-98 and DSTU-N B EN 1991-4:2012 requirements

comparison shows that the structures analysis is based on the application of the well-known Janssen's equation to determine the forces in the silos walls from filling with bulk materials. There are also some differences between these standards in the consideration of the various cereals specific gravity, friction factors and local grain influences. DSTU-N B EN 1991-4:2012 shows a rolling profile of circular panel sheets, which may be interpreted by sinusoidal corrugations (Figure 4) with the determination of the corrugated wall friction factor. However, when designing a silo according to DBN B.2.2-8-98, the allowance for the effective friction factor on corrugated walls would be incorrect, because such friction factor is defined in the requirements complex of a number of European regulations.

For corrugated steel sheets, the walls friction effective factor should be determined by the formula:

$$\mu_{\text{eff}} = (1 - a_w) \tan \varphi + a_w \mu;$$

where φ is the angle of internal friction; μ is a friction factor on flat surface; $a_w = 0.2$ is a factor of grain contact with a wall for the

Figure 4 - Profile with sinusoidal corrugations:
1- bulk material; 2- material flow; 3- surface discontinuity

sinusoidal corrugations.

According to DBN V.2.2-8-98 for wheat grain the internal friction angle is $\varphi = 25^\circ$ and for a silo flat steel surface the grain friction factor is $f = 0.4$, and according to DSTU-N B EN 1991-4: 2012 the internal friction angle is $\varphi = 30^\circ$ and for a silo flat metal surface the grain friction factors are $f = 0.38$ for galvanized steel and $f = 0.57$ for carbon steel. The effective factor for the friction on galvanized steel sheets corrugated surface will be:

$$\mu_{\text{eff}} = (1 - a_w) \tan \varphi + a_w \mu = (1 - 0.2) \tan 30^\circ + 0.2 \cdot 0.38 = 0.538.$$

The variations in friction factors determination according to DBN B.2.2-8-98 and DSTU-N B EN 1991-4: 2012 cause a significant difference in the determination of the loads and forces in the silo body due to grain filling. Since the DBN status is higher than the DSTU-N status, for the DSTU-N B EN 1991-4: 2012 provisions application it is necessary to introduce the DBN V.2.2-8-98 amendments based on the experimental and theoretical studies. The development and improvement of the national regulatory framework for the grain metal silos designing is necessary.

CALCULATION OF SMVU TYPE SILOS

In NDIBK the method for the SMVU steel silo design according to TU U 0397047.001- 2000 [6] was developed based on the three-dimensional computational model and finite elements method with the LIRA-CAD software use. The silo design is performed within the framework of the elastic members operation, which is the first approach to the study of the silo structure actual operation. The LIRA software package allows to reflect the actual silo members' geometric specifications and to take into account the peculiarities of the joint operation of the steel silo body and reinforced concrete foundation. The three-dimensional computational model includes the wall orthotropic shell elements, stiffeners, roof and reinforced concrete foundation. The silo members carrying capacity and deformability are calculated for the silo body versions made of different grades steels.

The steel silos design methodology was developed with the adaptation of individual approaches accepted in the EU codes and the observance of conformity to the Ukrainian standards. In particular, the silo members stress condition determination features, which did not depend on national standards, were taken into account based on the provisions of DSTU-N B EN 1993-4-1: 2012 [7]. The provisions for determining the corrugated sheet shell stiffness characteristics, assessing the strength and limiting the silo members deformation were taken from this standard.

The silo body corrugated sheets are considered as an equivalent homogeneous orthotropic shell with sinusoidal corrugations. The equivalent membrane properties of the corrugated sheets, i.e. tensile strength, and the equivalent bending properties, i.e. bending stiffness, are determined. Based on the corrugated sheets equivalent stiffness characteristics, the equivalent moduli of elasticity for the orthotropic shell finite elements are determined taking into account that in the common structural analysis programs (LIRA, SCAD) for the orthotropic shell members two moduli of elasticity are specified for two mutually perpendicular directions in the shell plane. These two moduli are determined depending on the principal task of the design, i.e. for the reliable determination of the membrane components of the shell stress condition and in the case of the determining influence of bending components.

The SMVU type silos are designed for two groups of limit states as follows:

- the first group (destruction, loss of stability etc.);
- the second group (excessive displacements).

The silo steel members are calculated according to the following conditions:

- the members strength,
- the nodes strength,
- the local members stability,
- the total silo stability,
- the support units and anchors strength, and
- the silo deformations restriction.

The results novelties include the computational determination of the corrugated plate axial stiffness, the silo stress conditions comparison in the cases of uniform grain loading and asymmetric loading with lateral discharge, the comparison of the body main members load-carrying capacity if they are made of different grade steels, and the assessment of foundations tilts dependence on soil conditions and various types foundations of the circular silos.

Further development of the computation method requires the calculation principles experimental check on models and full-scale objects.

SILO MEMBERS BOLT CONNECTIONS

The SMVU type silo members connections are performed with bolts M10 grade 8.8. There are more than 50 thousand bolts in the SMVU 220.100 silo body. The silo body reliability and durability depend on the bolt connections quality. Roman Shtelmach [1] draws attention to the fact that in real life the silo strength issues are addressed only after accidents, and notes that anarchy and technical ignorance prevail in the bolt connections and assembling solutions for the silos steel structures. Some companies establish the appropriate services and train the qualified field engineers. He advises that those who already have elevators should check the quality of bolt tightening at least once a year. Such proposal proves that the clear instructions for assembling the silo bolt connections are not available now.

Calculation of bolt joints according to DBN V.2.6-198:2014 [8] is simple enough, the bolts are checked for shear by the bolt steel strength and for bearing by the strength of steel sheets that are connected, but the problem of the connection tightening degree remains open.

The SMVU 220 silo body ring is assembled of 24 panels. When bolt joints act in bearing, the gap between M10 bolt and 12mm diameter hole in the sheet will be eliminated. In the limit state, when all bolt joints act in bearing, the silo perimeter may be increased. If we consider that the bolts on the average are placed in the holes centers, the silo perimeter increase will be $24x^2 = 48$ mm or more, taking into account the steel crushing.

In the cases of the bolt joints operation in bearing and alternating full loading and unloading of the silo, the gaps between the bolts and holes in the sheets will be eliminated, the bolts will gradually be involved in the operation and will crush the sheets steel, and the silo body will become deformed. To ensure the silo long-term reliable operation it is necessary to prevent the bolt connections operation in bearing.

Prior to the ring panels sheets crushing, the connection will act as slip-resistant. Sheets with one friction plane have less bearing capacity in the case of a friction connection than in sheets crushing.

The explanation given by some silos designers and manufacturers that paired sheets for ring panels are used in the absence of the required thickness sheets or to increase the bolts shearing planes number can be considered unsatisfactory. High-strength bolts of grade 8.8 have a sufficient margin of shear strength for one shear plane, and the sheets nomenclature allows the vast majority selection of ring panels from single sheets.

The frictional joint surfaces number increases with the use of paired sheets. The ring panels of two folded sheets have three times the friction connection strength than the friction connection of the single sheet ring panels, and significantly greater strength of the friction connection than in sheets bearing.

The behavior of friction joints with M10 bolts is not taken into account, because the national regulatory framework of the construction industry envisage the M16 bolt minimum diameter for friction connections. In industry the friction connections with the bolts of smaller diameters are used. It is possible that the pioneer developers of the silo structures from thin-walled corrugated profiles took into account the bolts tightening to the friction connection state.

In the near abroad it is possible to design the frictional connections with M12 bolts, for instance, in Belarus the EN standards are implemented and the Russian Federation its has own code SP16.13330.2017 [9].

In DBN V.2.6-198:2014 [8] it is stated in para 6.2.6 that "For steel frictional joints, the high-strength 40X steel "Select" bolts with a temporary resistance of not less than 1100 N/mm² in the cold specification

version according to GOST 22356 should be used. It is allowed to use bolts and nuts according to other normative documents with ensuring the requirements for the adopted strength grade according to GOST 22356". In accordance with GOST 22356 the bolt minimum diameter is 16 mm. This means that, according to DBN V.2.6-198:2014, the high-strength bolts M12 grade 8.8 cannot be used for friction joints in accordance with the interstate standard GOST 32484.3-2013 being in force in Ukraine [10]. We think that DBN V.2.6-198:2014 must be improved.

The friction connections eliminate the deformation of the silo body perimeter and diameter and contribute to the long-term reliable silo operation. But it is advisable to experimentally test the behavior of the silo elements bolt connections.

PROPOSALS FOR THE SILOS DESIGN METHODS IMPROVEMENT

The urgency of the silos calculation and design methods improvement arises from:

- lack of experience in the calculations of a silo as an orthotropic shell supported by ribs;
- need to experimentally verify the justification of the calculation methods used in DSTU-N B EN 1993-4-1:2012 [7];
- direct analogues absence for some design coefficients in national regulations.

Work must be carried out in the following directions:

- 1) validation of the silo strength and stability calculations and their comparison with the corresponding results obtained with the three-dimensional computer models, especially taking into account the wind effects on empty silo, lateral unloading etc. for asymmetrical loading;
- 2) determination of the silo stressed state actual specifications by the prototypes and full-scale objects experimental tests and the comparison of the experiment results with the calculations;
- 3) experimental determination of the multi-bolt joints resistance specifications for the shell galvanized corrugated sheets, including such joints deformability in a near-limit state;
- 5) experimental determination of mechanical and deformation specifications of corrugated sheet made of steels not covered by DBN V.2.6-198:2014 [8];
- 6) development of the stability and seismic impact calculations procedures;
- 7) generalization of steel silos calculating and engineering experience at the level of an "enterprise standard" manual with its further development to the state standard level;
- 8) DBN V.2.2-8-98 revision on the basis of experimental and theoretical researches;
- 9) silo calculation methods formalization and algorithmization for an independent application by the design specialists.

CONCLUSIONS

1. Taking into account the corrugated sheet membrane properties, the equivalent elasticity moduli for two directions of the orthotropic shell surface are determined and the silo body design method is improved.
2. The necessity is substantiated to carry out the prototypes and full-scale objects experimental researches in order to improve the regulatory framework of grain metal silos designing.
3. The need is shown to determine the strength of multi-bolt joints of shell corrugated galvanized sheets and to develop the regulatory framework for the design of the small diameter bolts friction connections.

БІБЛІОГРАФІЧНИЙ СПИСОК

1. Штельмах Р. Чтобы не повторилось, или еще раз о падении силосов. URL: <https://elevatorist.com/blog/read/511-ghtobyi-ne-povtorilos-ili-esche-raz-o-padenii-silosov>
2. Бутенко А. Уроки аварий стальных силосов. URL: <https://elevatorist.com/blog/read/323-uroki-avariy-stalnyih-silosov>
3. На Константиновский элеватор вызвали турков – искать виновных в обрушении емкости с зерном. URL:<https://inshe.tv/nikolaev/2017-08-16/256604/>
4. ДБН В.2.2-8-98 Підприємства, будівлі і споруди по зберіганню та переробці зерна.
5. ДСТУ-Н Б ЕН 1991-4:2012 Єврокод 1. Дії на конструкції. Частина 4. Бункери і резервуари (ЕН 1991-4:2006, IDT).
6. ТУ У 30397047.001-2000 Силоси металеві уніфіковані типу СМВУ. Технічні умови.
7. ДСТУ-Н Б ЕН 1993-4-1:2012 Єврокод 3. Проектування сталевих конструкцій. Частина 4-1. Силоси (ЕН 1993-4-1:2007, IDT).
8. ДБН В.2.6-198:2014 Сталеві конструкції.
9. ГОСТ 32484.3-2013 (ЕН 14399-3:2005) Болтокомплекты высокопрочные для предварительного натяжения конструкционные.
10. СП 16.13330.2017 Стальные конструкции.

3. The Turks were called to the Konstantinovskii elevator - to look for those responsible for the collapse of the tank with grain. Retrieved from <https://inshe.tv/nikolaev/2017-08-16/256604/>
4. Enterprises, buildings and structures for the storage and processing of grain: DBN V.2.2-8-98.
5. Eurocode 1. Actions on structures. Silos and tanks (Part 4): DSTU-N B EN 1991-4:2012 (EN 1991-4: 2006, IDT). (2013).
6. Silos metal ventilated of SMVU type. Specifications: TU U 30397047.001-2000.
7. Eurocode 3: Design of steel structures. Silos (Part 4-1): DSTU-N B EN 1993-4-1:2012 (EN 1993-4-1:2007, IDT). (2013).
8. Steel structures. Design code: DBN V.2.6-198:2014. (2015).
9. High-strength structural bolting assemblies for preloading. System HR-hexagon bolt and nut assemblies: GOST 32484.3-2013 (EN 14399-3:2005). (2015).
10. Steel structures: SP 16.13330.2017. (2017).

Стаття надійшла до редакції 16.12.2019 року

REFERENCES

1. Shtelmakh, R. (2019). Not to be repeated, or again about the fall of silos. Retrieved from <https://elevatorist.com/blog/read/511-ghtobyi-ne-povtorilos-ili-esche-raz-o-padenii-silosov>
2. Butenko, A. Lessons learned from steel silos accidents. Retrieved from <https://elevatorist.com/blog/read/323-uroki-avariy-stalnyih-silosov>

Doi: 10.33644/01003

УДК 624.046.3.:624.014.27.:624.074.4:725.36

MARIENKOV M. H.

Doctor of Engineering, Senior Researcher, Head of Department, SE "The State Research Institute of Building Constructions", Kyiv, Ukraine
e-mail: n.maryenkov@ndibk.gov.ua
tel.: +38 (050) 415-36-03
ORCID: 0000-0002-7246-845X

DUNIN V. A.

Researcher, SE "The State Research Institute of Building Constructions", Kyiv, Ukraine
e-mail: v.dunin@ndibk.gov.ua
tel.: +38 (044) 249-37-93
ORCID: 0000-0002-0370-0825

MARGVELASHVILI N.

PhD in Eng. Sc., Head of Department, CSIRO Ocean and Atmosphere, Hobart, Tasmania, Australia
e-mail: nugzar.margvelashvili@csiro.au
tel: +61(03) 6232 5142

FARENYUK G.G.

Doctor of Technical Sciences, Prof., Director, State Enterprise "The State Research Institute of Building Constructions", Kyiv, Ukraine
e-mail: farenyuk@ndibk.gov.ua, tel.: +38 (044) 249-72-34, ORCID: 0000-0002-5703-3976

BERCHUN Ya. O.

PG student, Department of Natural Resources, Institute of Telecommunications and Global Information Space of NAS of Ukraine, Kyiv, Ukraine
e-mail: berchun93@gmail.com
tel.: +38 (050) 179-09-03
ORCID: 0000-0002-9373-2870

EXPERIMENTAL MONITORING AND DYNAMIC CERTIFICATION OF BUILDING STRUCTURES

ABSTRACT

Methods of building structures (BS) dynamic certification have been developed. The methods include: BS visual and vibrodynamic examination; recommendations for the repair and restoration; BS further operation. Determination of dynamic characteristics of building structures for their free fluctuations of low amplitude, which are disturbed by the influence of natural microseisms, includes: registration of BS fluctuations by means of highly sensitive (in our case, seismic) sensors; analysis of Fourier spectrum in order to allocate resonance peaks corresponding to various forms of free oscillations; obtaining of impulse realizations of the selected resonance peaks on each form of constructions optical oscillations by means of Fourier

inversion. An example of the modern regulatory requirements application for the construction scientific and technical support and building structures monitoring for the pile foundation safe arrangement on a landslide hazardous building site in conditions of dense urban development in Kyiv during the installation of a Ø820 mm bored pile according to the pile field plan has been considered. Experimentally registered levels of vibration acceleration on the building foundation wall in the vertical and horizontal directions do not exceed 0.015 m/s^2 , which is significantly lower than the minimum permissible values of vibration acceleration for the foundations of buildings with brick bearing walls 0.15 m/s^2 . The research also

evaluated the presence of visible damage to the building in the available places and their possible development before and after piles placement. The condition of the plaster screed on a vertical crack in the house wall on the 8th floor, which was installed before the construction work start, after pile foundation installation has not changed – it remained undamaged.

KEYWORDS: monitoring, dynamic certification, acceleration, frequency, defects.

ЕКСПЕРИМЕНТАЛЬНИЙ МОНІТОРИНГ ТА ДИНАМІЧНА СЕРТИФІКАЦІЯ БУДІВЕЛЬНИХ КОНСТРУКЦІЙ

АНОТАЦІЯ

Розроблені методи динамічної сертифікації будівельних конструкцій (БК). Методи включають: візуальне та вібродинамічне дослідження БК; рекомендації щодо ремонту та відновлення; подальша експлуатація БК. Визначення динамічних характеристик будівельних конструкцій для їх вільних коливань малої амплітуди, що порушуються впливом природних мікросейсмів, включає: реєстрацію коливань БК за допомогою високочутливих (у нашому випадку сейсмічних) датчиків; аналіз спектру Фур'є з метою виділення резонансних піків, що відповідають різним формам вільних коливань; отримання імпульсних реалізацій вибраних резонансних піків на кожній формі оптичних коливань конструкцій за допомогою інверсії Фур'є. Розглянуто приклад застосування сучасних нормативних вимог, щодо науково-технічного супроводу будівництва та моніторингу БК, для безпечної улаштування пальового фундаменту на зсуви безпечній будівельній ділянці, в умовах ущільненої міської забудови в м. Києві, під час влаштування буронабивної палі Ø820 мм, згідно з планом пальового поля. Експериментально зареєстровані рівні віброприскорень на фундаментній стіні будівлі в вертикальному та горизонтальному напрямках не перевищують $0,015 \text{ м/с}^2$, що значно менше мінімально допустимих значень віброприскорень для фундаментів будівель з цегляними несучими стінами $0,15 \text{ м/с}^2$. При дослідженнях оцінювалась також наявність видимих ушкоджень в будівлі в доступних для цього місцях та їх можливий розвиток до і після влаштування палі. Стан гіпсового маяка на вертикальній тріщині в стіні будинку на 8-му поверсі, який був встановлений до початку будівельних робіт, після влаштування пальового фундаменту не змінився – він залишився неушкодженим.

КЛЮЧОВІ СЛОВА: моніторинг, динамічна сертифікація, прискорення, частота, дефекти

INTRODUCTION

The seismic risk is an unavoidable companion of our civilization and demands an adequate response. Thus, the buildings structures dynamic certification is a high priority step towards provision of the necessary and cost-effective level of constructions seismic resistance under conditions of obsolescence and physical deterioration, assessment of buildings and structures seismic vulnerability or their defects possible degree during the earthquakes of different intensity. The issue of BS dynamic certification and cost effectiveness of earthquake resistant construction have been considered in works by national and foreign researchers [1-21] and others. The general condition of the construction sites in Ukraine does not ensure safe living conditions for citizens and society due to the increased risk of emergencies. The increase in the buildings and constructions height, break with symmetric forms, and constant increase in the technogenic load on sites during the construction in conditions of dense urban development enhance the likelihood of disasters conditions.

First of all, it regards Kyiv where there are numerous examples of such violations:

1. In the center of Kyiv there have been another construction scandal regarding construction of "Elegant" residential development in dense urban development conditions on 118, Zhylianska Street [22]. At the beginning of construction process the neighboring five-storey house cracked during the pile driving, the tenants had to be resettled. As a result, an old five-story mansion and a one-story building next to it on 120-V Zhylianska Street was broken down and a huge trench was dug on this site. Residents of nearby houses are afraid that the walls of their houses will collapse – the cracks have already appeared on the upper floors [23].
2. Residents of houses number 3, 5, 5a and 7 on Lesia Ukrainka Blvd. and three more houses along Mechanikova Street were united by one problem - the construction in their yard. Houses are built on a landslide slope. Delicate balance can be disrupted by any intervention of construction equipment. Houses on Lesia Ukrainka Blvd. will simply slide down to Mechanikova Street [24].
3. On 7 Marianenka Lane a crack opening in the house walls coincides with the beginning of excavation for a residential complex on 9 and 11 Mechanikova Street. The state of the house was affected immediately by two construction sites – 9a and 11 Mechanikova Street and 12a Klovskyi Descent as well.

The above examples are just the tip of the iceberg of constantly increasing number of ground displacements and catastrophes across Ukraine

both in terms of their number and in terms of economic losses scale. There is an acute need for monitoring and scientific and technical support for new constructions taking into account the implementation of the new regulatory documents requirements for soil accidents prevention in future [25].

Over the past 10 years the State Enterprise "The State Research Institute of Building Constructions" gave much attention to both the regulatory and methodological support and to construction monitoring systems implementation. During this time, a number of regulatory documents considering monitoring of building structures have been developed:

1. DBN B.1.2-5: 2007 "Scientific and technical support of construction sites" [26].
2. DBN B.1.2-12-2008 "Construction in conditions of dense urban development. Safety requirements" [27].
3. DBN B.1.2-14-2009 "General principles for ensuring safety and reliability of buildings, facilities, structures" [28].

All of the above documents were a basis for new final regulatory document DSTU-B B.1.2-17: 2016 "Guidance on scientific and technical monitoring of buildings and structures" [29], which was developed under scientific supervision of prof. Yu.I. Kaliukh along with a series of regulations for technical diagnostic systems for buildings and structures [30]. Construction regulations [9] include all major methodological instructions and developments made on the scientific and methodological basis as well as design and experimental development of monitoring systems of structures [26-28, 30-31] that were put into effect on 01.04.2017. Guidance [9] was developed in harmonic accordance with international construction standards fib [12]. In [29] as well as in the fib Report [32], the classification of monitoring systems of structures is the same (see Figure 1 [12]).

Theoretical and methodological issues of the design and organization of monitoring research are analyzed in the works of modern foreign scientists Sassa K., Casagli N., Catani F., Lu P., Mikoš M., Željko A. and others [33-38]. Among the Ukrainian scientists, one should note the researches by prof. O. Trofimchuk, Associate Member of NAS of Ukraine, and prof. I. Kaliukh concerning theoretical and methodological background of monitoring systems concept, their design and experimental development in practice in construction and geotechnics, as well as studies of their students aimed at the same issues: Kaliukh T. [39], Polevets'kyi V. [40], Klymenkov O. [41], Khavkin K. [42], et al.

According to these researches, the current certification methods can be nominally divided into three groups: method of expert assessment,

calculation and analytical method, and method of technical diagnostics. Due to advantages and disadvantages peculiar to each of three methods, the relevant problems of certification can be reduced to two main issues. The first issue is a valid identification of criterion during assessment of seismic resistance of structures investigated. The second issue is an identification of required level of influence where dynamic structure of the building is investigated i.e. micro dynamic level under elastic stage of constructions operation or level of load relevant to the construction operation beyond the elasticity. Unfortunately, today there is no unique legal method for dynamic certification of structures in Ukraine. Hence, there is a need to improve test methods aimed at assessment of real seismic resistance including physical deterioration of the structures and it is an actual problem for Ukraine.

METHODS

We offer applicable method of certification and assessment of technical state of buildings and facilities. The method includes

- visual and vibrodynamic examination of buildings and facilities;
- development of calculation model and calculations with regard to actual seismicity of the area;
- comparative analysis of experimental and estimated data;
- recommendations for the repair and restoration and further operation of buildings and facilities.

Determination of dynamic characteristics of buildings and facilities in order to find free fluctuations of low amplitude, which are caused by the influence of natural microseisms includes the following steps:

- registration of fluctuations of the buildings and facilities with help of highly sensitive (in our case, seismic) sensors;
- calculation and analysis of Fourier spectrum in order to allocate resonance peaks corresponding to different forms of free oscillations; recording of impulse realizations of the selected resonance peaks on each form of optical oscillations of structures by means of Fourier inversion;
- Identification and graphic representation of different forms of oscillations.

BASIC MATERIAL

We would like to consider how up-to-date regulatory requirements are used for scientific and technical support and monitoring of structures [6-11] for safe arrangement of the pile foundation on a landslide prone construction site in conditions of dense urban development at the address 14, Pimonenka street, Kyiv in case of installation of

a bored pile № 87 with a diameter of 820 mm in accordance with the plan of pile field. The working area with a well for the bored pile is at a distance of 18-20 m from the nine-storeyed residential brick building. The area of the construction site is below the level of the area of the adjacent building and there is a retaining wall made of concrete blocks being 5 m high on the boundary. The mutual

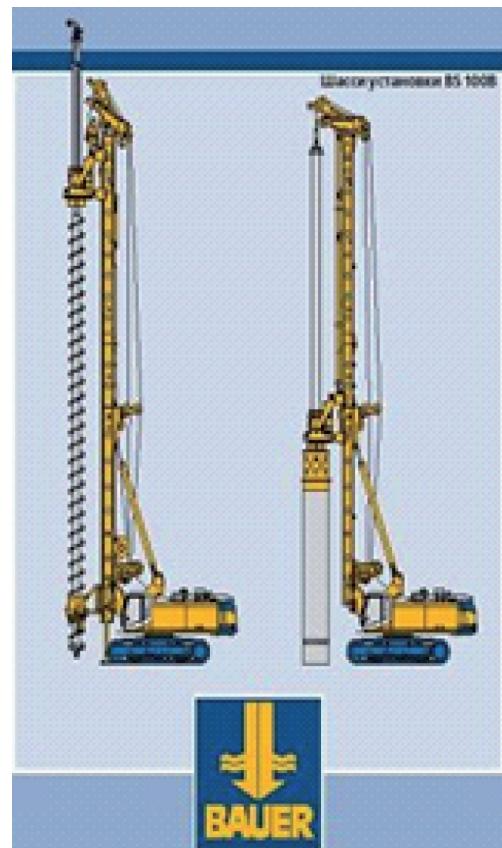

Figure 1 - Investigated building and retaining wall - View

Figure 2 - Chalky screed after the installation of the pile

location of the building, the retaining wall and the construction site is presented in Fig. 1

According to the present DBNs [26-31] the inspection of technical condition of the structures of the nine-storeyed building was performed in advance prior to drilling works, see (Fig. 1).

Figure 3 - Rotary drilling rig BG 40

Figure 4 - Construction site located near the building at 14, Pimonenko street (view from the flat on the 9th floor)

During the study of the technical condition of the structures, visible damage in the places available for this site and their possible development was assessed before the beginning of the works and during and after the installation of piles. The monitoring of the impact on building caused by drilling was monitored not only instrumentally, but also visually, by periodic observations during the arrangement of the bored pile № 87 with a diameter of 820 mm and with regard to the integrity of the chalky screed in a vertical crack in the bearing brick wall of the house at the 8th floor. The screed was installed in advance before the beginning of drilling (see Fig. 2).

Well drilling was performed by the BAUER 40 BG rotary drilling rig (Fig. 3). In the photo (Fig. 4) there is a view of the building investigated and the retaining wall alongside of the construction site. During the research period, one BAUER 40 BG rotary drilling rig (Fig. 3) worked on the site.

The vibration sensors were located on the foundation of the building (there were 3 vibration sensors) and oriented towards X, Z and Y directions (Fig. 5); two vibration sensors were located on the floor of the 9th floor of the building and were oriented towards X, Z or Y, Z directions (Fig. 6). The change in the orientation of the vibration sensors for the measurement of vibration acceleration was conducted in concert with the moment of their registration.

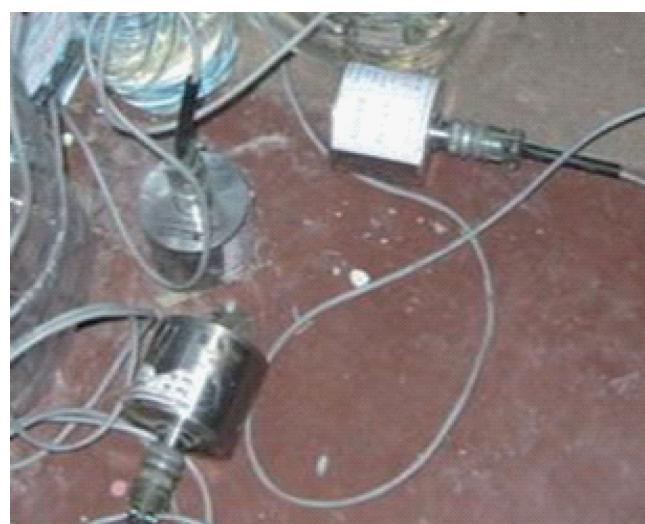
RESULTS

With the help of "Seismic monitoring" software [43] the initial experimental results were processed

and represented in the table.

The values of vibration acceleration - typical and peak - of the foundation (sensors № 1, № 2 and № 3) and the last 9th floor of the building (sensors № 4 and № 5) are given below.

CONCLUSIONS


The paper covers up-to-date regulatory requirements which are used for scientific and technical support and monitoring of structures [26-31] for safe arrangement of the pile foundation on a landslide prone construction site in conditions of dense urban development at the address 14, Pimonenka street, Kyiv in case of installation of a bored pile № 87 with a diameter of 820 mm in accordance with the plan of pile field.

Continuous monitoring of the piling process was conducted from 10.44 (time when the works started) to 17.56 (time when the works finished). The materials obtained from the experiments have shown:

1. The registered levels of vibration acceleration on the foundation wall of the building do not exceed $0.015 \text{ m} / \text{s}^2$ in the vertical and horizontal directions and this is considerably less than the minimum permissible values of vibration acceleration of the foundations of buildings with brick bearing walls which is $0.15 \text{ m} / \text{s}^2$ according to Table. 2 [44].
2. The registered levels of vibration acceleration at the 9th floor slab of the building do not exceed $0.004 \text{ m} / \text{s}^2$ in the vertical and horizontal directions and this is significantly lower than the permissible values of vibration

Figure 5 - Vibration sensors № 1, № 2 and № 3 for the registration of foundation oscillations oriented towards X, Z and Y directions

Figure 6 - Vibration sensors № 4 and № 5 for the registration of oscillations of the 9th floor of the building oriented towards X, Z or Y, Z directions

Table 1 - The values of vibration acceleration of the foundation - typical and peak

№	Time of monitoring	Grade, soil	Max values of vibration accelerations		Drilling practice
			1	2	
1	2	3	4	5	
1	10.44	0 m; Clay	№ 1 - 0.0005, 0,002-0.004 (X)		Record at silence regime
			№ 2 - 0.0005, 0,002-0.004 (Z)		
			№ 3 - 0.0002, 0,002-0.004 (Y)		
			№ 4 - 0.0001, 0,002-0.003 (X)		
			№ 5 - 0.0005, 0,002-0.004 (Z)		
2	10.59	0 m; Clay	№ 1 - 0,002 -0,004 (X)		Start of drilling Drilling of a well
			№ 2 - 0,001 -0,005 (Z)		
			№ 3 - 0,001 -0,002 (Y)		
			№ 4 - 0,001 -0,005 (X)		
			№ 5 - 0,001 -0,002 (Z)		
			№ 2 - 0,001 -0,003 (Y)		
			№ 3 - 0,001 -0,002 (Z)		
			№ 4 - 0,001 -0,002 (X)		
			№ 5 - 0,0005-0,001 (Z)		
3	11:18	4-5 m; Clay	№ 1 - 0,001 -0,003 (X)		Drilling of a well
			№ 2 - 0,001 -0,003 (Z)		
			№ 3 - 0,001 -0,002 (Y)		
			№ 4 - 0,001 -0,002 (X)		
			№ 5 - 0,0005 (Z)		
4	11:20	6-7 m; Clay	№ 1 - 0,001 -0,003 (X)		Drilling of a well
			№ 2 - 0,001 -0,006 (Z)		
			№ 3 - 0,001 -0,002 (Y)		
			№ 4 - 0,002 -0,0025 (X)		
			№ 5 - 0,0005-0,001 (Z)		
5	11:22	8 m; Clay	№ 1 - 0,001 -0,002 (X)		Microseismic background. Lengthening of tube timbering
			№ 2 - 0,001 -0,003 (Z)		
			№ 3 - 0,001 -0,002 (Y)		
			№ 4 - 0,001 -0,002 (X)		
			№ 5 - 0,0005-0,001 (Z)		
6	11:28	8 m; Clay	№ 1 - 0,002 -0,001 (X)		Motion of a drilling rig with tube timbering
			№ 2 - 0,001 -0.0035 (Z)		
			№ 3 - 0,001 -0,002 (Y)		
			№ 4 - 0,0015-0,001 (X)		
			№ 5 - 0,0005 (Z)		

Table 1 continued

1	2	3	4	5
7	11:40	9-10 m, Clay	№ 1 - 0,0015-0,004 (X)	Tube timbering spudding and next drilling
			№ 2 - 0,001 -0,005 (Z)	
			№ 3 - 0,002 -0,003 (Y)	
			№ 4 - 0,001 -0,005 (X)	
			№ 5 - 0,002-0,0005 (Z)	
8	11:56	14-16 m, Clayed sand	№ 1 - 0,001 -0,002; 0,006 (X)	Drilling of a well
			№ 2 - 0,001 -0,002; 0,006 (Z)	
			№ 3 - 0,001 -0,002 (Y)	
			№ 4 - 0,001-0,0015 (X)	
			№ 5 - 0,0003 (Z)	
9	12:05	16 m, Clayed sand	№ 1 - 0,001 – 0,0015 (X)	Microseismic background. Lengthening of tube timbering
			№ 2 - 0,0005; 0,002 (Z)	
			№ 3 - 0,0005 (Y)	
			№ 4 - 0,0005; 0,003 (X)	
			№ 5 - 0,0005 (Y)	
10	12.50	17-18 m, Clayed sand	№ 1 - 0,006 -0,008 (X)	Drilling of a well
			№ 2 - 0,004; 0,001 -0,003 (Z)	
			№ 3 - 0,001 -0,003; 0,015 (Y)	
			№ 4 - 0,0035 (X)	
			№ 5 - 0,0005; 0,0015 (Z)	
11	12:54	18-19 m, Clayed sand	№ 1 - 0,006 (X)	Drilling of a well
			№ 2 - 0,001 -0,003; 0,004 (Z)	
			№ 3 - 0,0025 – 0,0015; 0,005 (Y)	
			№ 4 - 0,002 -0,004 (X)	
			№ 5 - 0,0005; 0,003 (Z)	
12	12:56	19-20 m, Clayed sand	№ 1 - 0,006 (X)	Drilling of a well
			№ 2 - 0,002 -0,005 (Z)	
			№ 3 – 0,0025 -0,003; 0,006 (Y)	
			№ 4 - 0,0025 (X)	
			№ 5 - 0,0025 (Z)	
13	13:22	22 m, Watered clayed sand	№ 1 - 0,001 -0,003 (X)	Drilling of a well
			№ 2 - 0,001 -0,006 (Z)	
			№ 3 - 0,001 -0,002 (Y)	
			№ 4 - 0,001 -0,0025 (X)	
			№ 5 - 0,0005 -0,003 (Z)	
14	13:36	24-25 m, Watered clayed sand, Red clay	№ 1 - 0,001 -0,0015 (X)	Drilling of a well
			№ 2 - 0,0005; 0,002 (Z)	
			№ 3 - 0,0008 (Y)	
			№ 4 - 0,0005 –0,002 (X)	
			№ 5 - 0,004; 0,0005 (Z)	

Table 1 continued

1	2	3	4	5
15	14:04	28-30 m, Hard marl	№ 1 - 0,001 – 0,002 (X) № 2 - 0,001 – 0,002 (Z) № 3 - 0,001 – 0,002 (Y) № 4 - 0,0025 -0,001 (X) № 5 - 0,0003 (Z)	Drilling of a well
16	14:32	32-33 m, Waterlogged marl, Hard clay	№ 1 - 0,001 – 0,004 (X) № 2 - 0,0005 – 0,003 (Z) № 3 - 0,001 -0,002 (Y) № 4 - 0,0025 -0,001 (X) № 5 - 0,0005 (Z)	Drilling of a well
17	14:43	35-36 m, Compacted marl	0,0008 – 0,0015 (X) 0,001 – 0,002 (Z) 0,001 (Y) 0,001; 0,002 (X) 0,0005 (Z)	Drilling of a well
18	15:13	37-38 m, Marl	0,001 – 0,002; 0,004 (X) 0,001– 0,0015; 0,005 (Z) 0,001 – 0,0015; 0,003 (Y) 0,001; 0,002 (X) 0,0035 (Z)	Drilling of a well
19	15:26	38-39,5 m, Marl	0,001 – 0,002 (X) 0,001– 0,002 (Z) 0,001 – 0,0015 (Y) 0,001; 0,002 (X) 0,0025; 0,0005 (Z)	Drilling of a well
20	17.25	39.5 -35 m	№ 1 - 0,001 – 0,002 (X) № 2 - 0,001– 0,004; 0,006 (Z) № 3 - 0,001 – 0,0015 (Y) № 4 - 0,0015; 0,003 (X) № 5 - 0,0005 (Z)	Drilling of a well with concrete at the point of 39.5 - 35 m
21	17.35	39,5 m	№ 1 -0,0005 – 0,001 (X) № 2 - ,0005 (Z) № 3 - 0,0005 – 0,0008 (Y) № 4 - 0,0015; 0,0005 (X) № 5 - 0,0005 (Z)	Lifting of tube timbering from the well at 39,5 m depth
22	17.41	31 -23 m	№ 1 - 0,0015 – 0,001 (X) № 2 - 0,0012 – 0,0003 (Z) № 3 - 0,0015 – 0,0003 (Y) № 4 0,0025- 0,0008 (X) № 5 - 0,0003 (Z)	Filling of a well with concrete at the point of 31 - 23 m
23	17.56	31,5 m	№ 1 - 0,001 – 0,0018 (X) № 2 - 0,001 – 0,0003 (Z) № 3 - 0,001 – 0,0002;0,006(Y) № 4 - 0,001 - 0,002 (X) № 5 - 0,0003 (Z)	Lifting of tube timbering from the well at 31,5 m depth

acceleration of high-rise buildings which is 0.08 m / s² in according with para.7.2 [45].

- 3. In the research, the presence of visible damages to the building in the available places and possible development before and after pile installation was also assessed. Their development was evaluated according to a plaster screed on a vertical crack in the wall of the building. The state of the chalky screed on the vertical crack at the 8th floor was identified before the beginning of vibration dynamic tests on 02/15/2017. At the moment of the research on 02/21/2017 and after the installation of a concrete pile and next arrangement of pile foundation the state of the chalky screed has not changed. It remained undamaged. This is shown in the photo (Fig. 2).
- 4. Based on the above mentioned, it is necessary to carry out arrangement of pile foundation in accordance with the relevant technological procedures during the operation of the BAUER 40 BG rotary drilling rig (see Fig. 3-4).
- 5. For the control of quality of pile concreting, updated theoretical and numerical developments and technical means of the SE "SRIBC" [46] can be used.

REFERENCES

1. Alonso-Rodriguez, A., Nikitas, N., Knappett, J., Kampas, G., Anastopoulos, I., & Fuentes, R. (2018). System identification of tunnel response to ground motion considering a simplified model. *Frontiers in Built Environment*, 4, 1-11.
2. Balducci, M., Regni, R., Buttiglia, S., Piccioni, R., Venanti, L.D., Casagli, N., & Gigli, G. (2011). Design and built of a ground reinforced embankment for the protection of a provincial road (Assisi, Italy) against rockslide. *Proc. XXIV Conv. Naz. Geotecnica*, AGI, Napoli, 22th- 24th June 2011.
3. Barla, M., Antolini, F., & Dao, S. (2014). Il monitoraggio delle frane in tempo reale. *Strade e Autostrade*, 107, 154-157.
4. Borja, R.I., White, J.A., Liu, X.Y., & Wu, W. (2011). Factor of safety in a partially saturated slope inferred from hydro-mechanical continuum modeling. *International Journal for Numerical and Analytical Methods in Geomechanics*, 63(2), 140-154.
5. Casagli, N., Catani, F., Del Ventisette, C., & Luzi, G. (2010). Monitoring, prediction, and early warning using ground-based radar interferometry. *Landslides*, 7(3), 291-301.
6. Frodella, W., Ciampalini, A., Bardi, F., Salvatici, T., Di Traglia, F., Basile, G., & Casagli, N. (2018). A method for assessing and managing landslide residual hazard in urban areas. *Landslides*, 15(2), 183-197.
7. Ginzburg, L., & Shvets, V. (1987). *Soil dynamics and mechanics guide*. Kyiv: Budivelnyk.
8. Gomilko, A., Savitskii, O., & Trofymchuk, O. (2016). *Dynamics of porous elastic saturated fluid environments*. Kyiv: Naukova Dumka.
9. Highland, L., & Bobrowsky, P. (2008). *The Landslide Handbook—A Guide to Understanding Landslides*. Reston, Virginia: U.S. Geological Survey Circular.
10. Intrieri, E., Gigli, G., Gracch, T., Nocentini, M., Lombardi, L., Mugnai, F. ... Casagli, N. (2018). Application of an ultra-wide band sensor-free wireless network for ground monitoring. *Engineering Geology*, 238, 1-14.
11. Trofymchuk, O., Kaliukh, I., Silchenko, K., Berchun, V., Kaliukh, T., & Berchun, Y. (2017). Mitigation of landslide hazards in Ukraine under the guidance of ICL: 2009 –2016 (IPL 153&191). 4th World Landslide Forum, Ljubljana, Slovenia, EU, 29 May-2 June, 2017.
12. Kaliukh, I., Senatorov, V., Khavkin, O., Kaliukh, T., & Khavkin, K. (2013). Experimentally-analytical researches of the technical state of reinforce-concrete constructions for defence from landslide's pressure in seismic regions of Ukraine. International Federation for Structural Concrete (fib) symp., Tel-Aviv, 22 -24 April 2013.
13. Lacasse, S. (2013). Terzaghi Oration Protecting society from landslides – the role of the geotechnical engineer. 18th intern. conf. on Soil Mechanics and Geotechnical Engineering, Paris, 2-6 September 2013.
14. Lollino, G., & Chiara, A. (2006). UNESCO World Heritage sites in Italy affected by geological problems, specifically landslide and flood hazard. *Landslides*, 3(4), 311-321.
15. Martinelli, M., Burghignoli, A., & Callisto, L. (2016). Dynamic response of a pile embedded into a layered soil. *Soil Dynamics and Earthquake Engineering*, 87, 16-28.
16. Shokrabadi, M., Burton, H.V., & Stewart, J.P. (2018). Impact of Sequential Ground Motion Pairing on Mainshock-Aftershock Structural Response and Collapse Performance Assessment. *Structural Engineering*, 144 (10): 04018177.
17. Tsytovich, N. (1963). *Soil mechanics*. Moscow: State Publishing House of Literature on Building, Architecture and Building Materials.
18. Trofymchuk, O., Kaliukh, I., & Berchun, V. (2017). Landslide stabilization in building practice: methodology and case study from autonomic Republic of Crimea. 4th World Landslide Forum, Ljubljana, Slovenia, EU,

29 May-2 June, 2017. Workshop on World Landslide Forum. Springer, Cham, 587-595.

19. Bases and foundations of buildings and structures. Main principles of design: DBN V.2.1-10:2009 (2009).

20. Construction norms and rules. Foundations for machines with dynamic loads: SNiP 2.02.05:87. (1988).

21. Wang, Y., & Rathje, E.M. (2018). Application of a Probabilistic Assessment of the Permanent Seismic Displacement of a Slope. *Journal of Geotechnical and Geoenvironmental Engineering*, 144 (6): 04018034.

22. Don't construct any more, but sell. Top-10 illegal housing estates in Kyiv. Retrieved from <http://eveningkiev.com/article/33946>

23. Property developers destroy old historical buildings in Kyiv Centre. Retrieved from https://censor.net.ua/photo_news/254614/v_tsentre_kieva_zastroyischiki_rushat_starinnye_doma_foto

24. Pechersk. New housing estate on hazardous slope: authority, greed, batts and landslides. Retrieved from: https://censor.net.ua/resonance/166/pechersk_novostroyi_na_opasnom_sklone_vlast_jadnost_bity_i_opolzni_viktoriya_vladina_dlyatsenzornet

25. Cracked buildings in Kyiv can count just on installation of "indicators". Retrieved from <http://eveningkiev.com/article/36152>

26. Scientific and technical support of construction projects: DBN V.1.2-5:2007. (2008).

27. Construction in dense urban development conditions. Safety requirements: DBN V.1.2-12-2008. (2009).

28. General principles for ensuring the buildings, facilities, building structures and bases reliability and structural safety: DBN V.1.2-14-2009.

29. Kaliukh, I., Trofymchuk, O., Berchun, Y. et al. (2017). Guidance on scientific and technical monitoring of buildings and structures: DSTU-N B V.1.2-17:2016 (2017). Kyiv: Minreionbud.

30. Computer-aided test systems of building constructions. Common specifications: DSTU B V.2.6-25:2003. (2003).

31. Buildings and structures. Design of high-rise residential and public buildings. DBN V.2.2-24:2009. (2009).

32. International Federation for Structural Concrete (fib). Task Group 5.1. (2003). Monitoring and safety evaluation of existing concrete structures. State of art report.

33. Sassa, K. (2005). Landslides: Risk analysis and sustainable disaster management. Retrieved from <http://www.ebook3000.com/Kyoji-Sassa-Landslides-Risk-Analysis-and-Sustainable-Disaster-Management-147509.html>.

34. Casagli, N., Catani, F., Del Ventisette, C., & Luzi, G. (2010). Monitoring, prediction, and early warning using ground-based radar interferometry. *Landslides*, 7(3), 291–301.

35. Pieraccini, M., Casagli, N., Luzi, G., Tarchi, D., Mecatti, D., Noferini, L., & Atzeni, C. (2003). Landslide monitoring by ground-based radar interferometry: a field test in Valdarno (Italy). *Int J Remote Sens*, 24(6), 1385–1391.

36. Casagli, N., Tofani, V., Ciampalini, A., Raspini, F., Lu, P., & Morelli, S. (2018). TXT-tool 2.039-3.1: Satellite Remote Sensing Techniques for Landslides Detection and Mapping. In: Sassa K. et al. (Eds.) *Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools* (pp. 235–254). Cham: Springer.

37. Hübl, J., & Mikoš, M.. (2018). TXT-tool 2.386-1.2: Practice Guidelines on Monitoring and Warning Technology for Debris Flows. In: Sassa K. et al. (Eds.) *Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools* (pp. 567–585). Cham: Springer.

38. Ardanas, S.M., Krkač, M., Gazibara, S.B., Komac, M., Sečanj, M., & Arbanas, Ž. (2013). TXT-tool 2.385-1.1 A comprehensive landslide monitoring system: The Kostanjek landslide, Croatia. Retrieved from https://scholar.google.fr/citations?view_op=view_citation&hl=ru&user=7eoSoYYAAAAJ&citation_for_view=7eoSoYYAAAAJ:D03iK_w7-QYC

39. Kaliukh, T. (2011). Assessment of stress condition of landslide hazardous slopes in seismic loads conditions. (Doctor's thesis). Kyiv.

40. Polevetskyi, V. (2010). Regional features of landslide protection structures and landslide hazardous slopes in Chernivtsi Oblast. (Doctor's thesis). Kyiv: NDIBK.

41. Klimenkov, O., & Berchun, Y. (2016). Theoretical and methodological and practical aspects of buildings and landslide hazardous areas monitoring. 15th International scientific and practical conference "Modern information technologies of environmental safety management, nature management, emergency actions". Kyiv, Pushcha-Vodysia, 3-6.10.2016. Kyiv: ITGIP NASU.

42. Khavkin, K. (2015). Landslide hazard and stress-strain state of landslide protection structures in seismically hazardous regions of Ukraine (the case of Bukovyna). (Doctor's thesis). Kyiv: NDIBK.

43. Vibrational security. General requirements: DSTU GOST 12.1.012: 2008. (2009).

44. Operator's Guide: "Seismomonitoring" multichannel measuring system (version 1.0). (2009). Kyiv: Kyiv National Technical University of Ukraine "Kyiv Polytechnic Institute". Scientific and Technical Center "NPP Technical Equipment Diagnostics".

Management program.

45. Rate making of structures vibration in the USSR and abroad, 1. (1990). Moscow.
46. Farenyuk, G., Kaliukh, I., Farenyuk, E., Kaliukh, T., Berchun, Y., & Berchun, V. (2017). Experimental and theoretical diagnostics of ferroconcrete piles base on reflection of longitudinal and transverse waves. International fib symposium "High tech concrete: Where technology and engineering meet!" Maastricht, The Netherlands, 12 – 14 June, 2017.

БІБЛІОГРАФІЧНИЙ СПИСОК

1. Alonso-Rodriguez A., Nikitas N., Knappett J., Kampas G., Anastasopoulos I., & Fuentes R. System identification of tunnel response to ground motion considering a simplified model. *Frontiers in Built Environment*. 2018. 4. C. 1-11.
2. Balducci M., Regni R., Buttiglia S., Piccioni R., Venanti L.D., Casagli N., & Gigli G. Design and built of a ground reinforced embankment for the protection of a provincial road (Assisi, Italy) against rockslide: proc. XXIV Conv. Naz. Geotecnica, AGI, Napoli, 22th- 24th June 2011.
3. Barla M., Antolini F., & Dao S. Il monitoraggio delle frane in tempo reale. *Strade e Autostrade*. 2014. 107. P. 154–157.
4. Borja R.I., White J.A., Liu X.Y., & Wu W. Factor of safety in a partially saturated slope inferred from hydro-mechanical continuum modeling. *International Journal for Numerical and Analytical Methods in Geomechanics*. 2011. 63(2). P. 140-154.
5. Casagli N., Catani F., Del Ventisette C., & Luzi G. Monitoring, prediction, and early warning using ground-based radar interferometry. *Landslides*. 2010. 7(3). P. 291–301.
6. Frodella W., Ciampalini A., Bardi F., Salvatici T., Di Traglia F., Basile G., & Casagli N. A method for assessing and managing landslide residual hazard in urban areas. *Landslides*. 2018. 15(2). P. 183-197.
7. Гинзбург Л., Швец В. Справочник по динамике и механике грунтов. Київ: Будівельник, 1987.
8. Гомилко А., Савицкий О., Трофимчук А. Динамика пористоупругих насыщенных жидкостью сред. Київ: Наукова думка, 2016.
9. Highland L., & Bobrowsky P. The Landslide Handbook—A Guide to Understanding Landslides. 2008. Reston, Virginia: U.S. Geological Survey Circular.
10. Intriери E., Gigli G., Gracch T., Nocentini M., Lombardi L., Mugnai F. ... Casagli, N. Application of an ultra-wide band sensor-free wireless network for ground monitoring. *Engineering Geology*. 2018. 238. P. 1-14.
11. Trofymchuk O., Kaliukh I., Silchenko K., Berchun V., Kaliukh T., & Berchun Y. Mitigation of landslide hazards in Ukraine under the guidance of ICL: 2009 –2016 (IPL 153&191): 4th World Landslide Forum, Ljubljana, Slovenia, EU, 29 May-2 June, 2017.
12. Kaliukh I., Senatorov V., Khavkin O., Kaliukh T., & Khavkin K. Experimentally-analytical researches of the technical state of reinforce-concrete constructions for defence from landslide's pressure in seismic regions of Ukraine: International Federation for Structural Concrete (fib) symp., Tel-Aviv, 22 -24 April 2013.
13. Lacasse S. Terzaghi Oration Protecting society from landslides – the role of the geotechnical engineer: 18th intern. conf. on Soil Mechanics and Geotechnical Engineering, Paris, 2-6 September 2013.
14. Lollino G., & Chiara A. UNESCO World Heritage sites in Italy affected by geological problems, specifically landslide and flood hazard. *Landslides*. 2006. 3(4). P. 311-321.
15. Martinelli M., Burghignoli A., & Callisto L. Dynamic response of a pile embedded into a layered soil. *Soil Dynamics and Earthquake Engineering*. 2016. 87. P. 16-28.
16. Shokrabadi M., Burton H.V., & Stewart J.P. Impact of Sequential Ground Motion Pairing on Mainshock-Aftershock Structural Response and Collapse Performance Assessment. *Structural Engineering*. 2018. P. 144 (10): 04018177.
17. Цытович Н. Механика грунтов. Москва: Государственное издательство литературы по строительству, архитектуре и строительным материалам, 1963.
18. Trofymchuk O., Kaliukh I., & Berchun V. Landslide stabilization in building practice: methodology and case study from autonomic Republic of Crimea: 4th World Landslide Forum, Ljubljana, Slovenia, EU, 29 May-2 June, 2017. Workshop on World Landslide Forum. Springer, Cham, 587-595.
19. Основи і фундаменти будівель та споруд. Основні принципи проектування: ДБН В.1-10:2009.
20. Строительные нормы и правила. Фундаменты машин с динамическими нагрузками: СНиП 2.02.05:87.
21. Wang Y., & Rathje E.M. Application of a Probabilistic Assessment of the Permanent Seismic Displacement of a Slope. *Journal of Geotechnical and Geoenvironmental Engineering*. 2018. 144 (6): 04018034.
22. Уже не строят, но еще продают. Топ-10 незаконных ЖК столицы. ULR: <http://>

eveningkiev.com/article/33946

23. В центрі Києва застрийщики рушат старинні дому. ULR: https://censor.net.ua/photo-news/254614/v_tsentre_kieva_zastroyischiki_rushat_starinnye_doma_foto

24. Печерськ. Новострой на опасном склоне: власть, жадность, биты и оползни ULR: [https://censor.net.ua/resonance/166/pechersk_novostroyi_na_opasnom_sklonе_vlast_jadnost_bity_i_opolzni_viktoriya_vladina_dlyatsenzornet](https://censor.net.ua/resonance/166/pechersk_novostroyi_na_opasnom_skлоне_vlast_jadnost_bity_i_opolzni_viktoriya_vladina_dlyatsenzornet)

25. Треснувші столичні дому можуть рах-считывать только на установку «маячков». ULR: <http://eveningkiev.com/article/36152>

26. Науково-технічний супровід будівельних об'єктів: ДБН.В.1.2-5:2007.

27. Будівництво в умовах ущільненої забудови. Вимоги безпеки: ДБН.В.1.2-12-2008.

28. Загальні принципи забезпечення надійності та конструктивної безпеки будівель, споруд, будівельних конструкцій та основ: ДБН.В.1.2-14-2009.

29. Калюх Ю., Трофимчук О., Берчун Я. та ін.. Настанова щодо науково-технічного моніторингу будівель і споруд: ДСТУ-Н Б В.1.2-17:2016 Kyiv: Minrehionbud. 2017.

30. Автоматизовані системи технічного діагностування будівельних конструкцій. Загальні технічні вимоги: ДСТУ Б В.2.6-25:2003.

31. Будинки і споруди. Проектування висотних житлових і громадських будинків. ДБН.В.2.2-24:2009.

32. International Federation for Structural Concrete (fib). Task Group 5.1. Monitoring and safety evaluation of existing concrete structures. State of art report. 2003.

33. Sassa K. Landslides: Risk analysis and sustainable disaster management. 2005. ULR: <http://www.ebook3000.com/Kyoji-Sassa-Landslides-Risk-Analysis-and-Sustainable-Disaster-Management-147509.html>.

34. Casagli N, Catani F, Del Ventisette C, & Luzi G. Monitoring, prediction, and early warning using ground-based radar interferometry. *Landslides*. 2010. 7(3). P. 291–301.

35. Pieraccini M, Casagli N, Luzi G, Tarchi D, Mecatti D, Noferini L, & Atzeni C. Landslide monitoring by ground-based radar interferometry: a field test in Valdarno (Italy). *Int J Remote Sens*. 2003. 24(6). P. 1385–1391.

36. Casagli N., Tofani V., Ciampalini A., Raspini F., Lu P., & Morelli S. TXT-tool 2.039-3.1: Satellite Remote Sensing Techniques for Landslides Detection and Mapping. In: Sassa K. et al. (Eds.) *Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools*. 2018. P. 235–254. Cham: Springer.

37. Hübl J., & Mikoš M.. TXT-tool 2.386-1.2: Practice Guidelines on Monitoring and Warning Technology for Debris Flows. In: Sassa K. et al. (Eds.) *Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools*. 2018. P. 567–585). Cham: Springer.

38. Ardanas S.M., Krkač M., Gazibara S.B., Komac M., Sečanj M., & Arbanas Ž. TXT-tool 2.385-1.1 A comprehensive landslide monitoring system: The Kostanjek landslide, Croatia. 2013. ULR: https://scholar.google.fr/citations?view_op=view_citation&hl=ru&user=7eoSoYYAAAAJ&citation_for_view=7eoSoYYAAAAJ:D03iK_w7-QYC

39. Калюх Т. Оцінка напруженого стану зсувних небезпечних схилів в умовах сейсмічних навантажень: дис. докт. техн. наук, Київ, 2011.

40. Полевецький В. Регіональні особливості споруд для захисту зсувів та небезпечних зсувних схилів Чернівецької області: дис. докт. техн. наук. Київ: НДІБК, 2010.

41. Klimenkov O., & Berchun Y. Theoretical and methodological and practical aspects of buildings and landslide hazardous areas monitoring: 15th International scientific and practical conference "Modern information technologies of environmental safety management, nature management, emergency actions". Kyiv, Pushcha-Vodytsia, 3-6.10.2016. Kyiv: ITGIP NASU.

42. Калюх К. Небезпека зсувів та напруженій стан захисних споруд у сейсмічно небезпечних регіонах України (на прикладі Буковини): дис. докт. техн. наук. Київ: НДІБК, 2015.

43. Вібраційна безпека. Загальні вимоги: ДСТУ ГОСТ 12.1.012: 2008.

44. Operator's Guide: "Seismomonitoring" multichannel measuring system (version 1.0). 2009. Kyiv: Kyiv National Technical University of Ukraine "Kyiv Polytechnic Institute". Scientific and Technical Center "NPP Technical Equipment Diagnostics". Management program.

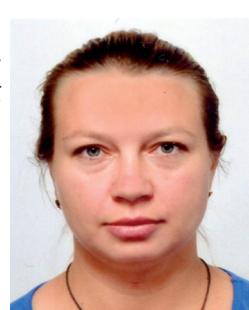
45. Нормирование вибраций конструкций в СССР и за рубежом, 1. Москва. 1990.

46. Farenuk G., Kaliukh I., Farenuk E., Kaliukh T., Berchun Y., & Berchun V. Experimental and theoretical diagnostics of ferroconcrete piles base on reflection of longitudinal and transverse waves: International fib symposium "High tech concrete: Where technology and engineering meet!" Maastricht, The Netherlands, 12 – 14 June, 2017.

The paper was received on 12 Dec 2019

Doi: 10.33644/01006

УДК 534.2


TROCHYMYENKO M. P.
Senior Researcher, SE "The State Research Institute of Building Constructions", Kyiv, Ukraine
e-mail: trochymenko@ndibk.gov.ua, тел.: + 38 (044) 249 37 71, ORCID: 0000-0002-7990-8518

ZAETS V. P.
PhD, Associate Professor, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine, e-mail: zaetsv@i.ua, тел.: + 38 (044) 204 9072, ORCID: 0000-0002-2232-9187

OSIPCHUK L. N.
Researcher, SE "The State Research Institute of Building Constructions", Kyiv, Ukraine, e-mail: Osipchuk@ndibk.gov.ua, тел.: + 38 (044) 249 37 71, ORCID: 0000-0002-5343-9127

KOTENKO S. G.
Junior Researcher, Engineer, SE "The State Research Institute of Building Constructions", Kyiv, Ukraine, e-mail: catdontlike@gmail.com, тел.: + 38 (044) 249 37 71, ORCID: 0000-0001-6804-1413

THE EFFICIENCY CALCULATION METHOD FOR NOISE BARRIERS LOCATED ON BRIDGE STRUCTURES

ABSTRACT

The paper investigates the traffic flows noise reduction by means of noise barriers located on bridge structures (bridges, viaducts, overpasses etc.). The paper sets and solves the analytical problem of finding the acoustic efficiency of the sound-reflecting acoustically rigid barrier on an near-by territory that needs noise protection and is located below the linear noise source. The proposed mathematical design model takes into account the sound-reflecting acoustically rigid half-plane (the roadway of bridge structure) influence on the noise barriers acoustic efficiency. Based on this analytical study results, it is found that the acoustically rigid roadway influence on the barrier efficiency is rather negligible for points located above the structure roadway level in the acoustic shadow zone and the results of the barriers efficiency calculations using the well-known Maekawa's method and the method proposed in this paper are the same for this zone. In the acoustic shadow zone located below the structure roadway level, there is an area of the reduced barrier efficiency. This is not consistent with the fixed stereotype that with increasing the acoustic shadow angle the barrier efficiency only increases. For this sound field zone, there are significant differences between the calculation results obtained by the Maekawa's method

and the method presented in this paper. The results discrepancy found in the calculations for this acoustic shadow zone is determined by the linear sound source shielding by the bridge structure roadway itself, which is taken into account in this calculation model. This is a new analytical result confirmed by the laboratory experimental studies of the noise barriers acoustic efficiency using the physical models.

KEYWORDS: bridge structure, noise shield, sound field, acoustic efficiency

МЕТОД РОЗРАХУНКУ АКУСТИЧНОЇ ЕФЕКТИВНОСТІ ШУМОЗАХИСНИХ ЕКРАНІВ НА МОСТОВИХ СПОРУДАХ

АНОТАЦІЯ

Стаття присвячена зниженню шуму транспортних потоків застосуванням шумозахисних екранів, встановлених на мостових спорудах (мостах, віадуках, шляхопроводах тощо). В статті поставлено та розв'язано аналітичну задачу з визначенням акустичної ефективності звуковідбивного акустично жорсткого екрана на прилеглій території, що потребує шумозахисту і знаходитьться нижче лінійного джерела шуму. Представлена розрахункова математична модель враховує вплив на

акустичну ефективність шумозахисного екрана звуковідбивної акустично жорсткої півплощини – полотна мостової споруди. За результатами даного аналітичного дослідження встановлено, що для точок в зоні акустичної тіні, розташованих вище рівня полотна споруди, вплив акустично жорсткого полотна на ефективність екрана є незначним і для цієї зони результати розрахунку ефективності екранів за відомим методом Маєкави та методом, викладеним у цій статті, збігаються. В зоні акустичної тіні, розташованої нижче рівня полотна споруди, відзначається наявність області пониженої ефективності екрана, що не узгоджується зі сталим стереотипом, що при збільшенні кута акустичної тіні, ефективність екрана тільки зростає. Для цієї зони звукового поля наявні суттєві розбіжності між результатами розрахунку, отриманих за методом Маєкави і методом, представленим у даній статті. Виявлено неузгодженість у результатах розрахунку в даній зоні акустичної тіні визначається впливом екранування лінійного джерела звуку самим полотном мостової споруди, врахованим у даній розрахунковій моделі. Це є новим аналітичним результатом, підтвердженим лабораторними експериментальними дослідженнями акустичної ефективності шумозахисних екранів на фізичних моделях.

КЛЮЧОВІ СЛОВА: мостова споруда, шумозахисний екран, звукове поле, акустична ефективність

INTRODUCTION

Each year the environmental issues become more acute in the world and attention is increasingly focused on their resolution. One of the most problematic is the noise reduction in the residential areas and in places of permanent people staying, because the excessive noise levels have the same degree of negative influence on human health as such factors as water and atmosphere pollutions.

The most widespread and intense sources of an excessive noise include industrial enterprises, construction sites, traffic flows etc. According to some reports [1, 2], just the traffic flows pollute up to 60-80% of the large cities territories with the excessive level noises, and in the villages located along the highways they are almost the only source of excessive noise.

It is also unfavorable that with every passing year the traffic volumes increase leads to the persistent noise levels rise. One of the most effective acoustic and construction means for the traffic noise reduction in near-by territories is the noise-protecting barriers use. The noise-protecting barriers use is one of the most effective acoustic and construction means for the traffic noise reduction in near-by territories and the only noise protecting means for the bridge structures.

The study of the influences of the barrier structural parameters, as well as of the relative locations of the sound source, barrier and noise protected zone has begun since the 50s of the last century and continues to nowadays, as is evidenced by numerous publications [3-10]. Most publications devoted to the noise barriers efficiency calculations are based either on the experimental studies carried out by Maekawa and his students from the late 1960s to the early 1970s or on the approximate numerical methods [3, 11]. However, for screens arranged on the bridge structures there are significant discrepancies between the calculations results obtained when using those methods and the field measurements results.

In this regard, the qualitative assessments of the noise barriers efficiency depending on their design parameters and arrangement location, as well as their acoustic efficiency enhancement remain extremely important and actual.

Thus, the work purpose was to develop a refined computational model for calculating the acoustic efficiency of noise barriers, installed on bridge structures, with an aim of determining the traffic flow noise reduction in adjacent areas located below a linear noise source.

PROBLEM STATEMENT

One of the unsolved problems is the acoustic efficiency determination for the noise barriers installed on bridge structures.

The acoustic field determination by mathematical means is based on the Helmholtz equation solution for an area around the "barrier-linear sound source-half-plane" system. It is reasonable to apply the finite regions method for the solution finding. Based on this method, the region, where the equation solution should be found, is divided into a number of canonical domains with boundary conditions, which in the equation can be solved, and then the separate regions should be "sewn" along the corresponding boundaries according to the force and kinematic components.

Thus, the problem arises to define the acoustic field created by the linear sound source in a form of an infinitely long cylinder with a radius much smaller than the wavelength. This sound source operates at a zero vibration mode (is pulsating) with a circular frequency ω and is at a distance g above an acoustically rigid half-plane. The acoustically rigid barrier having a height h is located at the arbitrary angle α to the horizontal at a distance b from the linear sound source. Behind the barrier there is an acoustically rigid plane with an arbitrary inclination angle β (Figure 1).

ANALYTICAL SOLUTION

The Helmholtz equation for the oscillation speed potential Φ in the polar coordinate system on the plane has the form:

$$\frac{\partial^2 \Phi}{\partial t^2} - c^2 \left[\frac{1}{r} \left(\frac{\partial}{\partial r} r \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} \right] = 0 . \quad (1)$$

Let's split the space around the barrier into three parts (Figure 1). Partial region I has the appearance of the area outside a circle of radius h with the following boundary conditions:

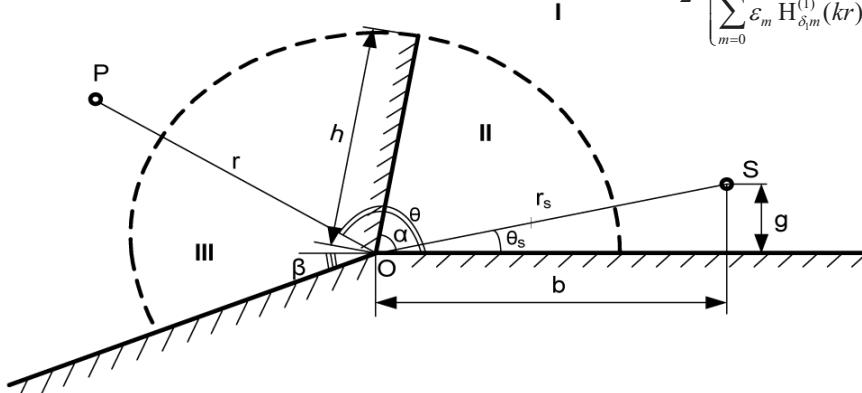
$$\frac{\partial \Phi}{\partial \theta} = 0 \text{ for } \begin{cases} \theta = 0, r > h \\ \theta = \pi + \beta, r > h \end{cases} . \quad (2)$$

The partial solution can be represented in the following form [12]:

$$\varphi_b(r, \theta) = [A_b H_b^{(1)}(kr) + B_b H_b^{(2)}(kr)] \times [C_b \cos(b\theta) + D_b \sin(b\theta)] , \quad (3)$$

or

$$\varphi_b(r, \theta) = [A_b J_b(kr) + B_b N_b(kr)] \times [C_b \cos(b\theta) + D_b \sin(b\theta)] , \quad (4)$$


where and henceforth, $H_b^{(1)}$, $H_b^{(2)}$, J_b and N_b are the symbols of cylindrical functions, namely, Hankel functions of the 1st and 2nd kinds, and Bessel and Neumann functions, respectively; and $k = \omega/c$ is a wave number.

Using partial solutions of the type (3) with the Sommerfeld condition being taken into account and using the boundary conditions, we obtain:

$$\Phi_I = \sum_{m=0}^{\infty} A_m \cdot \frac{H_{\delta_l m}^{(1)}(kr)}{H_{\delta_l m}^{(1)'}(kh)} \cos(\delta_l m \theta) , \quad (5)$$

$$\text{where } \delta_l = \frac{\pi}{\pi + \beta} .$$

Similarly, for partial regions II and III we can

Figure 1 – Computational geometric model of a sound-reflecting barrier installed on a bridge structure.
S - linear sound source; P - reference point

write:

$$\Phi_{II} = \sum_{n=0}^{\infty} B_n \cdot \frac{J_{\delta_2 n}(kr)}{J_{\delta_2 n}'(kh)} \cos(\delta_2 n \theta) , \quad (6)$$

$$\text{where } \delta_2 = \frac{\pi}{\alpha} ,$$

$$\Phi_{III} = \sum_{q=0}^{\infty} C_q \cdot \frac{J_{\delta_3 q}(kr)}{J_{\delta_3 q}'(kh)} \cos(\delta_3 q(\theta - \alpha)) , \quad (7)$$

$$\text{where } \delta_3 = \frac{\pi}{\pi + \beta - \alpha} .$$

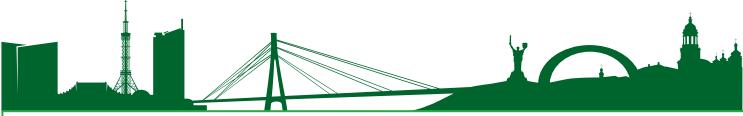
The diffraction of an infinite cylindrical sound source of small wave dimensions located in region I on a wedge with acoustically rigid surfaces and an opening angle $\pi + \beta$, that is, when $h < r_s$, is described by the following expression [13]:

$$\Phi_0 = \frac{\delta_l i}{2} \begin{cases} \sum_{m=0}^{\infty} \varepsilon_m H_{\delta_l m}^{(1)}(kr_s) J_{\delta_l m}(kr) \cos(\delta_l m \theta_s) \cos(\delta_l m \theta), & r \geq r_s \\ \sum_{m=0}^{\infty} \varepsilon_m H_{\delta_l m}^{(1)}(kr) J_{\delta_l m}(kr_s) \cos(\delta_l m \theta_s) \cos(\delta_l m \theta), & r < r_s, \end{cases} \quad (8)$$

$$\text{where } \varepsilon_m = \begin{cases} 1, m = 0 \\ 2, m > 0 \end{cases} .$$

Then the field in region I can be written in the following form:

$$\Phi_I = \Phi_0 + \Phi_1 ,$$


or based on expressions (5) and (8) the following formula is obtained:

$$\Phi_I = \sum_{m=0}^{\infty} A_m \cdot \frac{H_{\delta_l m}^{(1)}(kr)}{H_{\delta_l m}^{(1)'}(kh)} \cos(\delta_l m \theta) + \frac{\delta_l i}{2} \begin{cases} \sum_{m=0}^{\infty} \varepsilon_m H_{\delta_l m}^{(1)}(kr_s) J_{\delta_l m}(kr) \cos(\delta_l m \theta_s) \cos(\delta_l m \theta), & r \geq r_s \\ \sum_{m=0}^{\infty} \varepsilon_m H_{\delta_l m}^{(1)}(kr) J_{\delta_l m}(kr_s) \cos(\delta_l m \theta_s) \cos(\delta_l m \theta), & r < r_s , \end{cases} \quad (9)$$

where Φ_I is the oscillation speed potential in region I with an allowance for the sound source field.

The conditions for connecting the fields at the borders can be written as follows:

$$\Phi_I = \Phi_{II} + \Phi_{III} , \\ r = h , \\ \theta \in [0, (\pi + \beta)] , \quad (10)$$

$$\frac{\partial \Phi_I}{\partial r} = \begin{cases} \frac{\partial \Phi_{II}}{\partial r}, & r = h, \theta \in [0, \alpha] \\ \frac{\partial \Phi_{III}}{\partial r}, & r = h, \theta \in [\alpha, (\pi + \beta)] \end{cases} . \quad (11)$$

If the values (5) - (7) are inserted into the system of equations (10) and (11), the following expressions are obtained:

$$\begin{aligned} & \frac{\delta_1 i}{2} \sum_{m=0}^{\infty} \varepsilon_m H_{\delta_1 m}^{(1)}(kr_s) J_{\delta_1 m}(kh) \cos(\delta_1 m \theta_s) \cos(\delta_1 m \theta) + \\ & + \sum_{m=0}^{\infty} A_m \cdot \frac{H_{\delta_1 m}^{(1)}(kh)}{H_{\delta_1 m}^{(1)'}(kh)} \cos(\delta_1 m \theta) = \\ & = \sum_{n=0}^{\infty} B_n \cdot \frac{J_{\delta_2 n}(kh)}{J_{\delta_2 n}'(kh)} \cos(\delta_2 n \theta) + \\ & + \sum_{q=0}^{\infty} C_q \cdot \frac{J_{\delta_3 q}(kh)}{J_{\delta_3 q}'(kh)} \cos\left(\delta_3 q\left(\theta - \frac{\pi}{2}\right)\right); \quad (12) \\ & \frac{\delta_1 i}{2} \sum_{m=0}^{\infty} \varepsilon_m H_{\delta_1 m}^{(1)}(kr_s) (J_{\delta_1 m}(kh))' \cos(\delta_1 m \theta_s) \cos(\delta_1 m \theta) + \\ & + \sum_{m=0}^{\infty} A_m \cos(\delta_1 m \theta) = \begin{cases} \sum_{n=0}^N B_n \cos(\delta_2 n \theta), & \theta \in [0, \alpha] \\ \sum_{q=0}^Q C_q \cos\left(\delta_3 q\left(\theta - \frac{\pi}{2}\right)\right), & \theta \in (\alpha, (\pi + \beta)] \end{cases} . \quad (13) \end{aligned}$$

After the functional relationships algebraization procedure with taking into account the orthogonality of the corresponding functions sets, the following equations system in the unknown coefficients A, B and C form is obtained:

$$\begin{cases} \sum_{m=0}^{\infty} A_m \frac{H_{\delta_1 m}^{(1)}(kh)}{H_{\delta_1 m}^{(1)'}(kh)} I_{m\mu} - \sum_{n=0}^{\infty} B_n \frac{J_{\delta_2 n}(kh)}{J_{\delta_2 n}'(kh)} I_{n\mu} - \sum_{q=0}^{\infty} C_q \frac{J_{\delta_3 q}(kh)}{J_{\delta_3 q}'(kh)} I_{q\mu} = \\ = -\frac{\delta_1 i}{2} \sum_{m=0}^{\infty} \varepsilon_m H_{\delta_1 m}^{(1)}(kr_s) J_{\delta_1 m}(kh) \cos(\delta_1 m \theta_s) I_{m\mu} \\ \sum_{m=0}^{\infty} A_m I_{m\eta} - \sum_{n=0}^{\infty} B_n I_{n\eta} - 0 = -\frac{\delta_1 i}{2} \sum_{m=0}^{\infty} \varepsilon_m H_{\delta_1 m}^{(1)}(kr_s) J_{\delta_1 m}(kh) \cos(\delta_1 m \theta_s) I_{m\eta} \\ \sum_{m=0}^{\infty} A_m I_{m\zeta} - 0 - \sum_{q=0}^{\infty} C_q I_{q\zeta} = -\frac{\delta_1 i}{2} \sum_{m=0}^{\infty} \varepsilon_m H_{\delta_1 m}^{(1)}(kr_s) J_{\delta_1 m}(kh) \cos(\delta_1 m \theta_s) I_{m\zeta} \end{cases} \quad (14)$$

where

$$\begin{aligned} I_{m\mu} &= \int_0^{\pi+\beta} \cos(\delta_1 m \theta) \cos(\delta_1 \mu \theta) d\theta = \\ &= \begin{cases} (\pi + \beta), & \mu = m = 0 \\ (\pi + \beta)/2, & \mu = m \neq 0 \\ 0, & \mu \neq m \end{cases} , \end{aligned}$$

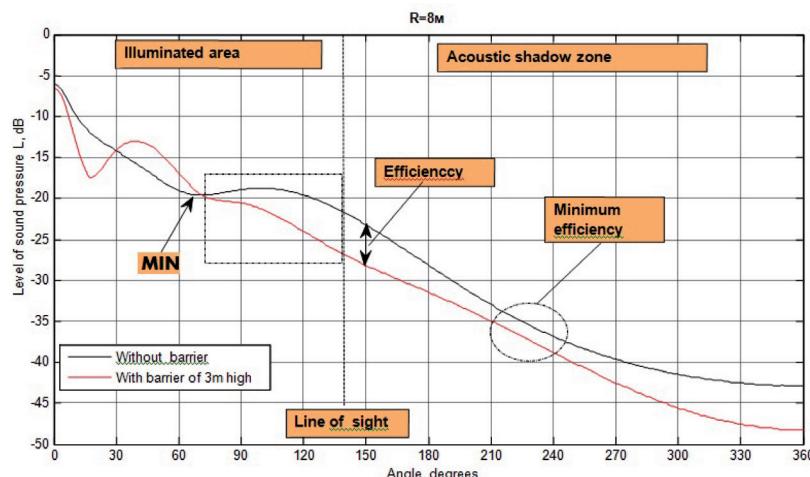
$$\begin{aligned} I_{n\mu} &= \int_0^{\alpha} \cos(\delta_2 n \theta) \cos(\delta_2 \mu \theta) d\theta, \\ I_{q\mu} &= \int_{\alpha}^{\pi+\beta} \cos(\delta_3 q(\theta - \alpha)) \cos(\delta_3 \mu \theta) d\theta, \\ I_{m\eta} &= \int_0^{\alpha} \cos(\delta_2 n \theta) \cos(\delta_2 \eta \theta) d\theta = \begin{cases} \alpha, & \eta = n = 0 \\ \alpha/2, & \eta = n \neq 0 \\ 0, & \eta \neq n \end{cases}, \\ I_{m\zeta} &= \int_0^{\alpha} \cos(\delta_1 m \theta) \cos(\delta_1 \zeta \theta) d\theta, \\ I_{q\zeta} &= \int_{\alpha}^{\pi+\beta} \cos(\delta_3 q(\theta - \alpha)) \cos(\delta_3 \zeta(\theta - \alpha)) d\theta = \\ &= \begin{cases} \pi + \beta - \alpha, & \zeta = q = 0 \\ (\pi + \beta - \alpha)/2, & \zeta = q \neq 0 \\ 0, & \zeta \neq q \end{cases} \end{aligned}$$

The algebraic equations infinite system (14) is solved by a reduction method.

CALCULATIONS RESULTS ANALYSIS

The sound field determined by the expressions (6), (7) and (9) and obtained based on the equations system (14) solution will be analyzed without considering the earth influence for the assessment of the efficiency (ΔL , dB) of the noise barrier located on the bridge structure. The noise barrier efficiency is determined as the sound pressure levels difference in the acoustic shadow zone points:

$$\Delta L = L_1 - L_2 = 20 \lg \frac{|p_1|}{|p_2|}, \quad (15)$$


where L_1 and L_2 are the sound pressure levels, dB, in the acoustic shadow points without and with a barrier, respectively; p_1 and p_2 are the sound pressures, Pa, without and with a barrier, respectively, determined by the following expression:

$$p = \rho_0 \frac{\partial \Phi}{\partial t}, \quad (16)$$

where ρ_0 is the environment density.

In Figure 2, for the field of a linear sound source located on the bridge, the sound pressure levels dependence on the angle (θ) of the reference point location, without any barrier and with a vertical acoustically rigid barrier (the reference point radius vector rotates counterclockwise and at zero degree is in the bridge roadway plane) is presented.

The linear source sound field without a screen is,

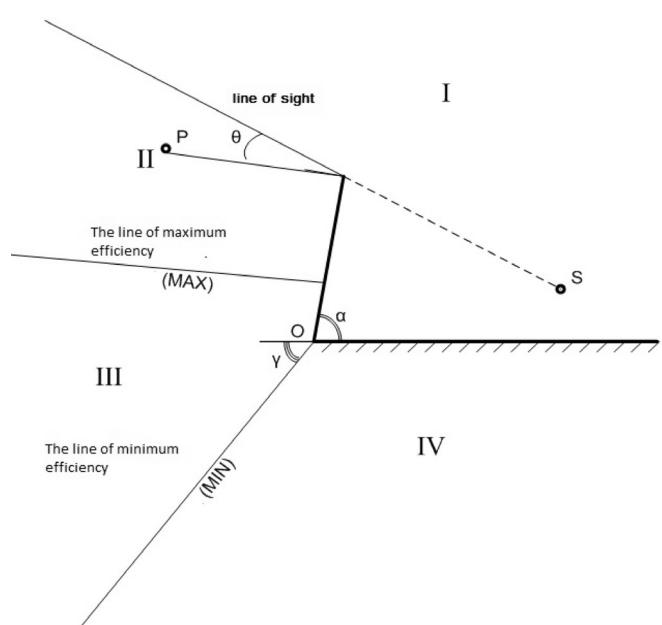
Figure 2 – Sound pressure levels around the “barrier - half-plane - linear sound source” system without and with a barrier

on the whole, almost uniformly decreasing with the reference point angle increase (the distance from the source increases). However, between the sound source and half-plane edge (the bridge roadway edge) there is an area, where the decay uniformity is disturbed and the minimum sound pressure zone is observed ("MIN"), from which the sound pressure level increases towards the sound source (which is natural) and towards the half-plane edge. This fact is caused by the interference of the direct sound from the source and the sound reflected from the half-plane edge. For points below the bridge roadway, the bridge structure roadway becomes a barrier itself and the sound pressure level drops rapidly.

The sound field of this linear source with the barrier is much more complicated. In the illuminated zone area, between the noise source and the barrier, a sound field explicit interference pattern with periodic changes of the sound pressure minima and maxima is observed and the pattern configuration depends mainly on the frequency and distance between the sound source and barrier.

As can be seen from Figure 2, the barrier acoustic performance is observed even in the illuminated area (highlighted by a dotted rectangle). When the reference point moves into the acoustic shadow zone, the barrier efficiency continues to increase and reaches its maximum ("Efficiency"). With the further increase of the reference point angle (below the bridge roadway), the minimum acoustic efficiency area ("Minimum efficiency") is observed, after which (with the angle increase) the efficiency gradually increases again.

The whole space around the “barrier - half-plane - linear sound source” system can be divided into the following characteristic zones (Figure 3):


I is a half-space bounded by the line of sight, barrier and the bridge roadway (illuminated

zone). In this zone there are the interference phenomena due to the sound reflection from the bridge roadway and acoustically rigid noise barrier;

II is the half-space in the acoustic shadow zone, limited by the line of sight, barrier and maximum barrier efficiency line. With the reference point angle increasing in this zone the barrier efficiency monotonously increases to its maximum value. The maximum acoustic efficiency line is above the bridge roadway level and is inclined at an angle to the horizon. Its exact direction and location depends on many factors (barrier inclination angle and its distance to the sound source, sound frequency, etc.). The barrier height dependence is negligible;

III is the half-space between the directions of maximum and minimum barrier efficiency. In this area, the barrier efficiency monotonously decreases (with the reference point angle increase) to a minimum value. The minimum efficiency line direction is also practically independent of the barrier height;

IV - is the half-space limited by the minimum barrier efficiency line and the reverse side of the bridge deck surfacing. In this zone the noise barrier efficiency gradually increases again.

Figure 3 – The characteristic of the sound field around the “barrier - half-plane - linear sound source” system: α – barrier inclination angle; θ – acoustic shadow angle; γ – minimal barrier efficiency line angle

CONCLUSIONS

The article presents a mathematical model for calculating the acoustic efficiency of noise barriers installed on bridge structures. The barriers efficiency characteristics obtained by this method not in all acoustic shadow zones agree with the traditional notion that the screen performance monotonically increases with the increase of the Fresnel number.

The generally accepted Maekawa's design model [3] is based on the fact that the sound source is located in a free space and the only obstacle to the sound propagation is the noise barrier. For such problem formulation, the barrier efficiency uniform dependence on the Fresnel number is quite natural.

The design model discussed in this paper is slightly different from the Maekawa's model, because, in addition to the barrier, it takes into account the presence of an acoustically rigid half-plane, such as the bridge deck surfacing.

The analytical study found out that the results of calculating the barriers acoustic efficiency determined by these two calculation models agree only in the acoustic shadow zone located above the bridge structure roadway. Significant differences were found for the acoustic shadow points below the bridge structure roadway level. The barrier efficiency at these points (if a Fresnel number significantly increases) is actually much lower than the values that could be obtained by the Maekawa's method.

REFERENCES

1. Didkovskyi, V.S., Yakymenko, V.Ya., Zaporozhets, O.I., Savin, V.H., & Tokarev, V.I. at al. (2002). Fundamentals of acoustic ecology: Textbook. Kirovohrad: TOV Imeks LTD.
2. Les cartes du bruit de Paris. Retrieved from http://www.paris.fr/pratique/bruit/cartographie-du-bruit-routier/les-cartes-du-bruit-de-paris/rub_1285_stand_30546_port_3069
3. Maekawa, Z. (1968). Noise reduction by screens. *Applied Acoustics*, 1 (3), 157 – 173.
4. Menounou, P.A. (2001). Correction to Maekawa's curve for the insertion loss behind barriers. *The Journal of the Acoustical Society of America*, 110 (4), 1828 – 1838.
5. Ogata, S., Tsuru, H., Nakajima, H., & Fujiwara, K. (2003). Investigation for insertion loss of noise barrier for sound source moving at high speed. *Acoustical Science and Technology*, 24 (3), 148 – 150.
6. Monazzam, M. R., & Nezafat, A. (2007). On the application of partial barriers for spinning machine noise control: a theoretical and experimental approach. *Iranian Journal of Environmental Health Science & Engineering*, 4 (2), 113 – 120.
7. Trokhymenko, M. P., & Zaiets, V.P. (2010). The influence of noise barrier parameters on its efficiency. *Construction materials, products and sanitary equipment: Scientific and technical collection*, 36, 71–76.
8. Zaets, V., & Kotenko, S. (2017). Investigation of the efficiency of a noise protection screen with an opening at its base. *Eastern-European Journal of Enterprise Technologies*, 5 (89), 4-11. doi: <https://doi.org/10.15587/1729-4061.2017.112350>
9. Menounou, P., & Papaefthymiou, E.S. (2010). Shadowing of directional noise sources by finite noise barriers. *Applied Acoustics*, 71 (4), 351–367. doi: <https://doi.org/10.1016/j.apacoust.2009.10.002>
10. Koussa, F., Defrance, J., Jean, P., & Blanc-Benon, P. (2013). Acoustic performance of gabions noise barriers: Numerical and experimental approaches. *Applied Acoustics*, 74 (1), 189–197. doi: <https://doi.org/10.1016/j.apacoust.2012.07.009>
11. Hincu, G. (2003). Computer assisted evaluation of traffic noise level. "Technical Acoustics", 19, 1 – 6.
12. Shenderov, E. L. (1972). Wave issues of hydroacoustics. Leninhrad: Sudostroenie.
13. Shenderov, E. L. (1989). Radiation and scattering of sound. Leninhrad: Sudostroenie.

БІБЛІОГРАФІЧНИЙ СПИСОК

1. Дідковський В. С., Якименко В.Я., Запорожець О.І., Савін, В.Г., Токарев В.І. Основи акустичної екології: Навч. посібник. Кіровоград: ТОВ Імекс АТД, 2002.
2. Les cartes du bruit de Paris. URL: http://www.paris.fr/pratique/bruit/cartographie-du-bruit-routier/les-cartes-du-bruit-de-paris/rub_1285_stand_30546_port_3069
3. Maekawa Z. Noise reduction by screens. *Applied Acoustics*. 1968. № 1 (3), P. 157 – 173.
4. Menounou P. A. Correction to Maekawa's curve for the insertion loss behind barriers. *The Journal of the Acoustical Society of America*. 2001. № 110 (4), P. 1828 – 1838.
5. Ogata S., Tsuru H., Nakajima H., Fujiwara K. Investigation for insertion loss of noise barrier for sound source moving at high speed. *Acoustical Science and Technology*. 2003. № 24 (3), P. 148 – 150.
6. Monazzam M. R., Nezafat A. On the application of partial barriers for spinning machine noise control: a theoretical and experimental approach. *Iranian Journal of Environmental Health Science & Engineering*. 2007. № 4 (2), P. 113 – 120.

7. Трохименко М.П., Заєць В.П. Вплив параметрів шумозахисного екрана на його ефективність. Будівельні матеріали, вироби та санітарна техніка. Науково-технічний збірник. 2010. № 36, С. 71–76.
8. Zaets V., Kotenko S. Investigation of the efficiency of a noise protection screen with an opening at its base. Eastern-European Journal of Enterprise Technologies. 2017. № 5 (89), С. 4-11. doi: <https://doi.org/10.15587/1729-4061.2017.112350>
9. Menounou P., Papaefthymiou E.S. Shadowing of directional noise sources by finite noise barriers. Applied Acoustics. 2010. № 71 (4), С. 351–367. doi: <https://doi.org/10.1016/j.apacoust.2009.10.002>
10. Koussa F., Defrance J., Jean P., Blanc-Benon P. Acoustic performance of gabions noise barriers: Numerical and experimental approaches. Applied Acoustics. 2013. № 74 (1), С. 189–197. doi: <https://doi.org/10.1016/j.apacoust.2012.07.009>
11. Hincu G. Computer assisted evaluation of traffic noise level. Electronic Journal «Technical Acoustics». 2003. №19, С. 1 – 6.
12. Шендеров Е. Л. Волновые задачи гидроакустики. Ленинград: Судостроение. 1972.
13. Шендеров Е. Л. Излучение и рассеяние звука. Ленинград: Судостроение. 1989.

Стаття надійшла до редакції 29.08.2019 року

Doi: 10.33644/01002

УДК 624.012:624.046

GURKIVSKYI O.B.

PhD, State Enterprise "The State Research Institute of Building Constructions", Kyiv, Ukraine
phone: +38 (044) 2493775
e-mail: alex_84m@ukr.net
ORCID: 0000-0002-2411-5529

BOLOTOV A. Yu.

Researcher, State Enterprise "The State Research Institute of Building Constructions", Kyiv Ukraine
phone: +38 (044) 2493775
e-mail: viperwk@gmail.com
ORCID: 0000-0002-4102-3079

THE CAST-IN-PLACE REINFORCED CONCRETE FRAME CALCULATIONS FOR TEMPERATURE EFFECTS AT ALL CONSTRUCTION AND OPERATION STAGES IN MULTI-STOREY BUILDING

ABSTRACT

In multi-storey buildings built earlier, the temperature actions did not have a significant effect, since the external and internal structures large mass and practically constant internal temperatures did not cause the problems with the elements different elongation. The situation became much more complicated for modern high-rise buildings with statically indeterminate structures of impressive dimensions. External fencing structures are attached to internal structures; buildings have large heights etc. As a result, it becomes necessary to take into account the temperature effects. When designing buildings, it is obligatory to take into account climatic temperature effects and operational thermal effects, which must be neutralized primarily by isolation of heat sources and adjacent structures. The temperature difference depends on the building functional purpose, its location, orientation with respect to the cardinal points, the internal temperature conditions, as well as the surface and finish of the enclosing and supporting structures. The structures are the most vulnerable to the temperature exposure during the building construction. This is caused by the changes in air temperature, in which there are quite regular periodic fluctuations with annual and daily periods. Random fluctuations associated with changes in the weather over small periods of time (several days) are superimposed on periodic fluctuations. Currently, there are a sufficient number of calculation tools for taking into account the temperature effects in the buildings designs. The main difficulty in the calculations is the description of design situations corresponding

to possible temperature effects manifestations at all stages of buildings construction and operation. The paper gives an example of taking into account the temperature effect when calculating the building frame with significant geometric dimensions both in plan and in height. So, in the framework of the high-rise building calculations in Kiev, we analyzed the temperature effects during its construction in order to determine the structures stress-strain state. The temperature effects calculation was performed for the building construction stage (for a time before closing the heating circuit). It was recommended to divide this building into two temporary joints, which, therefore, allowed reducing forces in the slabs compared with the initial ones by more than three times. In the design and construction of buildings of stately proportions, the temperature effects nature and magnitude have a significant influence on the building structural solutions determination. The temperature effects due to climatic, technological, operational and emergency factors are the most significant. The temperature effects consideration in calculations using various modern tools allows preventing damages to structures at all stages of the buildings construction and operation and identifying technological measures to avoid the materials overexpenditure due to the necessity of taking up forces that may occur during temperature actions.

KEYWORDS: temperature effect; calculation for temperature effects; calculation of a high-rise building; cast-in-place reinforced concrete frame; determination of stress-strain state; economic feasibility

РОЗРАХУНОК НА ТЕМПЕРАТУРНІ ВПЛИВИ МОНОЛІТНОГО ЗАЛІЗОБЕТОННОГО КАРКАСУ БАГАТОПОВЕРХОВОЇ БУДІВЛІ НА УСІХ СТАДІЯХ ЗВЕДЕННЯ ТА ЕКСПЛУАТАЦІЇ

АННОТАЦІЯ

У багатоповерхових будівлях, побудованих раніше, температурні впливи не мали значного впливу, так як при великій масі зовнішніх і внутрішніх конструкцій і при практичні постійних внутрішніх температурах не існувало проблем різниці подовження елементів. Ситуація значно ускладнюється для сучасних багатоповерхових будівель із статично невизначеними конструкціями значних розмірів. До внутрішніх конструкцій кріпляться конструкції зовнішнього огороження, будівлі мають велику висоту і т.п. В результаті виникає необхідність врахування температурних впливів. При проектуванні будинків треба обов'язково враховувати кліматичні температурні впливи, експлуатаційні теплові впливи, які необхідно нейтралізувати насамперед ізоляцією джерел виділення тепла і прилеглих конструкцій. Різниця температур залежить від функціонального призначення будівлі, його місця розташування, орієнтації по відношенню до країн світу, внутрішнього температурного режиму, поверхні і опорядження огорожувальних та несучих конструкцій. Але найбільш вразливі конструкції при температурному впливі під час зведення будівель. Це обумовлено змінами температури повітря, в яких є цілком закономірні періодичні коливання з річним і добовим періодом. На періодичні коливання накладаються випадкові коливання, пов'язані зі зміною погоди на невеликих відрізках часу (кілька днів). На даний час існує достатня кількість розрахункових інструментів щодо врахування температурного впливу при конструктуванні будівель. Основною ж складністю у розрахунках є опис розрахункових ситуацій, що відповідають можливим проявам температурних впливів на усіх стадіях зведення та експлуатації будівель. В статті наведено приклад врахування температурного впливу при розрахунках каркасу будівлі із значними геометричними розмірами як у плані, так і по висоті. Так в рамках розрахунків висотної будівлі в м. Києві нами було проведено розрахунок на температурні впливи під час будівництва, з метою визначення напруженого-деформованого стану конструкцій. Розрахунок на температурні впливи було виконано для стадії зведення будівлі (на час перед закриттям опалювального контуру). Дану будівлю рекомендується розділити двома тимчасовими швами. Що в свою чергу дозволило зменшити зусилля у плитах у порівнянні із початковими понад у три рази. При проектуванні та зведенні

будівель значних розмірів значний вплив на визначення конструктивних рішень будівлі мають характер та величина температурних впливів. Найбільшими є температурні впливи обумовлені кліматичним, технологічними, експлуатаційними та аварійними факторами. Врахування температурних впливів у розрахунках за допомогою сучасних засобів дозволяє уникати ушкоджень конструкцій на усіх стадіях зведення та експлуатації будівель, визначати технологічні заходи, що дозволяють уникати перевитрат матеріалів, обумовлених необхідністю сприйняття зусиль, які можуть виникати при температурних впливах.

КЛЮЧОВІ СЛОВА: температурний вплив; розрахунок на температурні впливи; розрахунок висотної будівлі; монолітний залізобетонний каркас; визначення напруженено-деформованого стану; економічна обґрунтованість

РАСЧЕТ НА ТЕМПЕРАТУРНЫЕ ВОЗДЕЙСТВИЯ МОНОЛІТНОГО ЖЕЛЕЗОБЕТОННОГО КАРКАСА МНОГОЭТАЖНОГО ЗДАНИЯ НА ВСЕХ СТАДИЯХ ВОЗВЕДЕНИЯ И ЭКСПЛУАТАЦИИ

АННОТАЦИЯ

В многоэтажных зданиях, построенных ранее, температурные воздействия не имели значительного влияния, так как при большой массе внешних и внутренних конструкций и при практически постоянных внутренних температурах не существовало проблемы разницы удлинение элементов. Ситуация значительно усложняется для современных многоэтажных зданий со статически неопределенными конструкциями внушительных размеров. К внутренним конструкциям крепятся конструкции наружного ограждения, здания имеют большую высоту и т.п. В результате возникает необходимость учета температурных воздействий. При проектировании зданий надо обязательно учитывать климатические температурные воздействия, эксплуатационные тепловые воздействия, которые необходимо нейтрализовать в первую очередь изоляцией источников выделения тепла и прилегающих конструкций. Разница температур зависит от функционального назначения здания, его местоположения, ориентации по отношению к сторонам света, внутреннего температурного режима, поверхности и отделки ограждающих и несущих конструкций. Но наиболее уязвимые конструкции при температурном воздействии при возведении зданий. Это обусловлено изменениями температуры воздуха, в которых вполне закономерные периодические колебания с годовым и суточным периодом. На периодические колебания накладываются случайные колебания, связанные с изменением погоды на небольших отрезках времени

(несколько дней). В настоящее время существует достаточное количество расчетных инструментов по учету температурного воздействия при конструировании зданий. Основной же сложностью в расчетах является описание расчетных ситуаций, соответствующих возможным проявлениям температурных воздействий на всех стадиях возведения и эксплуатации зданий. В статье приведен пример учета температурного воздействия при расчетах каркаса здания со значительными геометрическими размерами как в плане, так и по высоте. Так, в рамках расчетов высотного здания в г. Киеве, нами был проведен расчет на температурные воздействия при строительстве с целью определения напряженно-деформированного состояния конструкций. Расчет на температурные воздействия был выполнен для стадии возведения здания (на время перед закрытием отопительного контура). Данное здание рекомендуется разделить двумя временными швами, что в свою очередь позволило уменьшить усилия в плитах по сравнению с начальными более чем в три раза. При проектировании и строительстве зданий внушительных размеров значительное влияние на определение конструктивных решений здания имеют характер и величина температурных воздействий. Наиболее значимыми являются температурные воздействия, обусловлены климатическим, технологическим, эксплуатационными и аварийными факторами. Учет температурных воздействий в расчетах с помощью современных средств позволяет избегать повреждений конструкций на всех стадиях возведения и эксплуатации зданий, определять технологические меры, позволяющие избегать перерасхода материалов, обусловленных необходимостью восприятия усилий, которые могут возникать при температурных воздействиях.

КЛЮЧЕВЫЕ СЛОВА: температурное воздействие; расчет на температурные воздействия; расчет высотного здания; монолитный железобетонный каркас; определения напряженно-деформированного состояния; экономическая обоснованность

INTRODUCTION

In multi-storey buildings previously constructed, temperatures did not have any significant effect, since the external and internal structures of large mass and practically constant internal temperatures did not cause any problems with the elements elongation difference. The situation is much more complicated in modern multi-storey buildings with statically indeterminate structures of considerable size. Envelope structures are attached to structural elements; buildings are of great heights etc. As a result, there is a necessity of taking into account the temperature effects.

PURPOSE

The temperature effects [1, 2 and 3] can be caused by the following reasons:

- climatic - in the form of temperature difference during the day and year;
- technological - in the process of curing concrete, when heated in winter;
- operational – due to the equipment, such as furnaces, boilers etc.;
- due to explosion, fire or firefighting.

When designing a building, it is necessary to take into account the climatic temperature effects and operational thermal effects, which should be counteracted, first of all, by the heat sources and adjacent structures isolation.

The temperature impact on a structure can be represented as:

- the difference in the structure or its element relative temperature with respect to the conditional temperature;
- the temperature difference of the structure or element intersection surfaces, which is defined as the temperature difference of the outer and inner surfaces;
- the temperature difference of a whole structural element, which is determined by the average temperatures difference in the individual elements.

Temperature effect is included into the group of so-called internal deformations along with shrinkage, compression and settlement of supports [2]. These actions - deformations and stresses - depend first of all on the material properties and the attachment conditions of the individual elements, the whole structure or its elements.

TASKS

In terms of temperature actions, a building can be divided into two parts such as an underground one, that is, a part below the ground level, and a building superstructure. The underground building part is not only massive, but also naturally isolated by the surrounding soil. Therefore, the temperature effects here are not so significant if compared to those in the superstructure. Blocks separated by contraction joints are selected from the condition of concrete shrinkage and creep, as well as of the uneven settlement possible effects.

The surface part is subject to temperature effects in two directions - horizontal and vertical. Horizontal effects have always been given attention; these effects are usually within acceptable limits when the building is divided by expansion joints into separate small-scale elements, and a system providing stability (subsystem transmitting a horizontal impact) is constructed in such a way that the horizontal temperature load does not cause any significant stress or displacement in it.

The vertical expansion in the vertical direction was

not given so much attention in buildings constructed earlier, because the structures had a small height, a greater weight and the structural system integrity (either a system with self-bearing brick walls, or a frame system). There are many reasons to pay more attention to the elements elongation in the vertical direction in the modern high-rise buildings. Primarily, a smaller weight of buildings leads to the significant temperature fluctuations in structures.

The internal rooms are air-conditioned, so interior structures have a more or less constant temperature, and when the ambient temperature fluctuates, the temperature difference of the structure inner and outer elements grows.

The temperature difference naturally depends on the building use, location, orientation with respect to cardinal points, internal temperature conditions, as well as envelope and structural elements surface and finishing [4].

But the structures are mostly subject to temperature effects during the construction. This is due to the air temperature changes with quite regular periodic fluctuations having the annual and daily periods. The random fluctuations associated with the weather change during the small periods of time (several days) are imposed on the periodic fluctuations.

MAIN PART

Currently, there are a great number of calculation tools that allow taking into account the temperature effects during the buildings designing [3, 13 and 14]. The main difficulty of the calculation is the description of design situations corresponding to the potential demonstrations of temperature effects at all stages of building construction and operation.

Below is an example of how temperature is taken into account when calculating a frame with the large-scale geometric dimensions both in plan and height.

Thus, within the framework of designing the high-rise building in Kyiv [5 and 6], we analyzed the temperature effects during the construction in order to determine the structures stress-strain state.

The building of a residential complex with social and domestic facilities and underground parking [11] has a complex shape in plan, axes dimensions of 76.68 m x 28.74 m, 26 residential floors and one basement floor.

The residential complex structural scheme includes a monolithic reinforced concrete frame with vertical diaphragms and stiffening cores (i.e. the braced frame with vertical reinforced concrete diaphragms). The heights of parking lot and the 1st floor are 3.8 m and 4.2 m, respectively, heights of the 24th and 25th floors are 3.6 m, and the typical floor height is 3.0 m.

Cast-in-place reinforced concrete building floors are 200 mm thick and cast-in-place reinforced concrete walls of C25/30 concrete grade are up to 350 mm thick. Reinforcing steel of classes A500C

and A240C corresponds to DSTU 3760: 2006.

Pylons of rectangular section and sizes from 300x1200 mm to 400x2200 mm are made of C35/40 concrete grade; classes A500C and A240C reinforcing steel corresponds to DSTU 3760: 2006.

The foundation for the building is composed of CFA concrete piles with a diameter of 620 mm (C20/25 (B25) concrete grade and classes A500C and A240C reinforcing steel according to DSTU 3760: 2006) united by a 1400 mm high cast-in-place ground-beam (C25/30 (B30) concrete grade and classes A500C and A240C reinforcing steel according to DSTU 3760: 2006).

The plan of a typical building floor is shown in Fig.1.

The calculation of the three-dimensional computer model was carried out using the software package "Lira-CAD 2017", which is a computer system for structural analysis and design.

The design scheme is adopted in the form of a spatial system consisting of core elements that simulate the work of columns, girders and plate elements simulating the floor slabs, walls, diaphragms and foundations work.

For the structures calculations the scheme, at which the maximum forces act in the building structural elements, was adopted as a basis for the calculations of main load combinations under the wind action in two directions and of emergency load combinations.

The loads and impacts for the building structures were taken in accordance with DBN V.1.2-2:2006 [7], taking into account the requirements of DBN V. 1.2-14-2009 [8], DBN V. 1.1-12:2014 [9], DBN V. 2.2-24:2009 [10]. In the calculation, the CC3 class of structure responsibility and the structural responsibility category according to DBN V. 1.2-14-2009 [8] were taken into account by applying the corresponding coefficients of reliability (when calculating for the basic load combinations, the coefficients 1.15... 1.25 were taken to calculate for the first group of limit states and coefficient 1.0 to calculate for the second group of limit states; when calculating for the emergency load combinations, the coefficient 1.05 was taken). The seismic load value was taken in accordance with [9] and amounted to 7 points.

The characteristic wind load for the 1st wind

Figure 1 - Plan of a typical building floor

district is 370 Pa and the terrain type is IV.

The characteristic snow load for the 5th snow region is 1550 Pa.

The cross-sections of building reinforced concrete elements were checked according to the forces values obtained in the analysis of the "base-foundation-upper structure" system model

Figures 5 - 15 show the results of the vertical displacements calculation in the floor slab level at elevation +73.200 and the moment forces in the floor slab under the temperature effects.

The temperature effects were calculated for the building construction stage (for a time before closing the heating circuit).

According to DBN V.1.2.2-2006 "Loads and actions" Section 11, for the temperature effects calculation the characteristic values of average temperatures changes along the element cross section for the warm Δt_w and cold Δt_c seasons, respectively, should be determined:

$$\begin{aligned}\Delta t_{w,loop} &= t_w - t_{oc} = t_{ew} + \theta_1 + \theta_4 - t_{oc} = \\ &= 28 + 6 + 8,5 - 15 = 27,5^{\circ}\text{C}\end{aligned}\quad (1)$$

$$\begin{aligned}\Delta t_{c,loop} &= t_c - t_{ow} = t_{ec} - 0,5\theta_1 - t_{ow} = \\ &= -20 - 3 - 0 = -23^{\circ}\text{C}\end{aligned}\quad (2)$$

$$\begin{aligned}\Delta t_{winner} &= t_w - t_{oc} = t_{ew} - t_{oc} = \\ &= 28 - 15 = 13^{\circ}\text{C}\end{aligned}\quad (3)$$

$$\begin{aligned}\Delta t_{c,inner} &= t_c - t_{ow} = t_{ec} - t_{ow} = \\ &= -20 - 0 = -20^{\circ}\text{C}\end{aligned}\quad (4)$$

where t_w and t_c are the average temperatures characteristic values along the element section during the warm and cold seasons (taken according to DBN V.1.2.2-2006 table 11.1) and t_{ow} and t_{oc} are the initial temperatures in warm and cold seasons.

The daily average ambient air temperatures in warm t_{ew} and cold t_{ec} seasons may be taken as 28°C and -20°C , respectively.

The initial temperature corresponding to the structure or its part closure in a complete system, in warm t_{ow} and cold t_{oc} seasons may be taken as $t_{ow} = 0^{\circ}\text{C}$ and $t_{oc} = 15^{\circ}\text{C}$.

Figure 8 - The principal stresses mosaic in the N1 floor slab of the residential complex building at elevation +73.200 under the temperature action (MPa)

The obtained calculation results show an approximate picture of the temperature distribution. The actual distribution will not have significant drops, and the required reinforcement content will be lower. However, the pattern of forces distribution and required reinforcement content will not change dramatically. In the real conditions, the temperature action at the construction stage before the heating circuit closure can lead to the damages occurrence in the form of cracks and spalling in structures (floors,

Figure 2 - General view of the building structural design

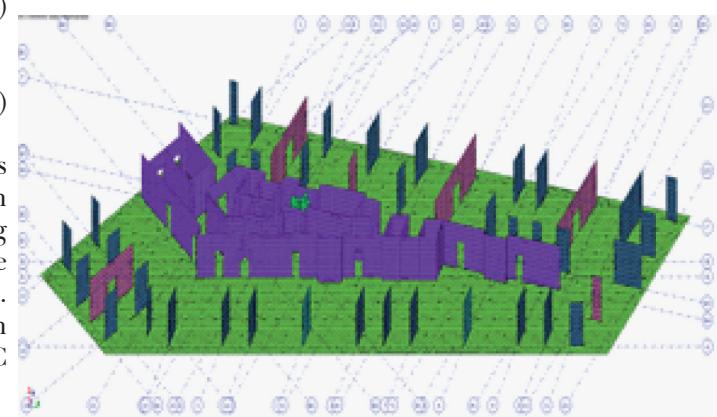
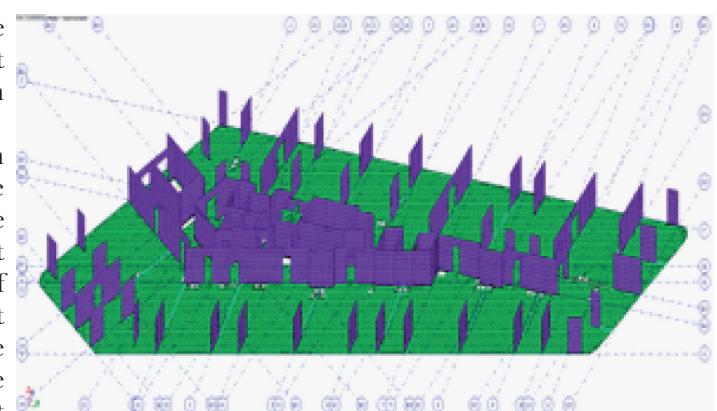
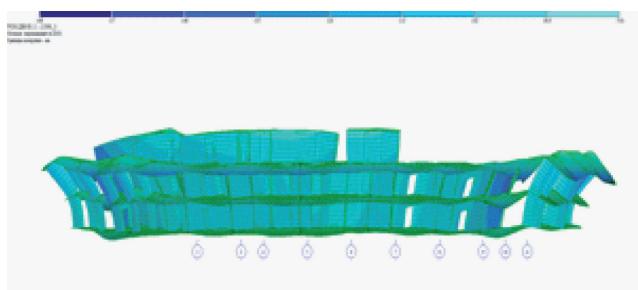
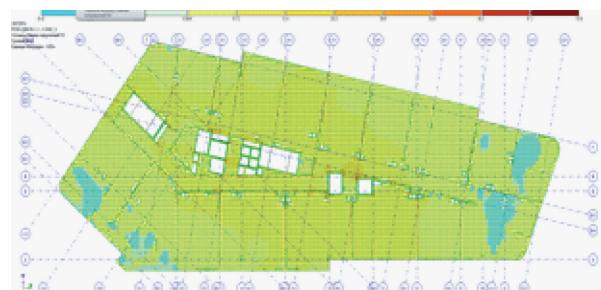


Figure 3 - Model extract (the residential complex basement floor)

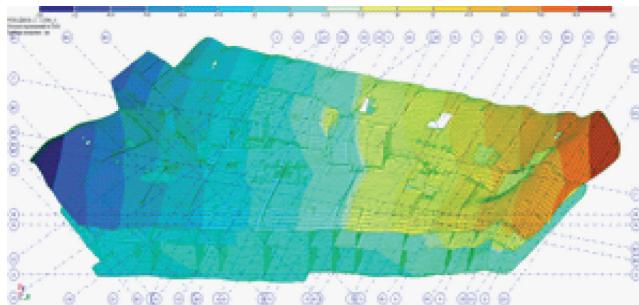
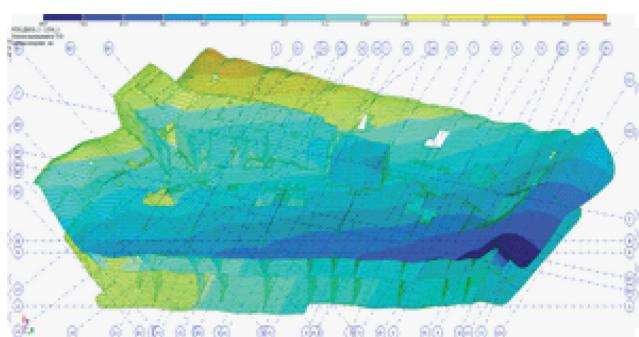
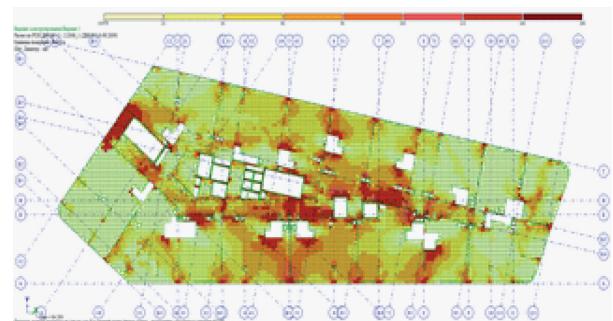
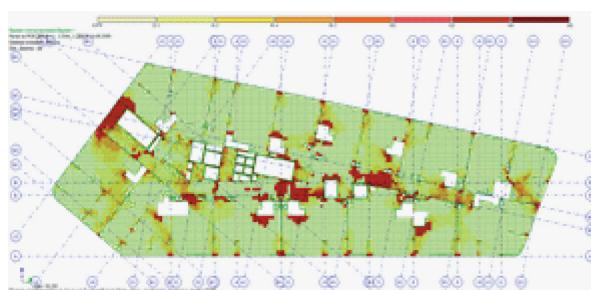
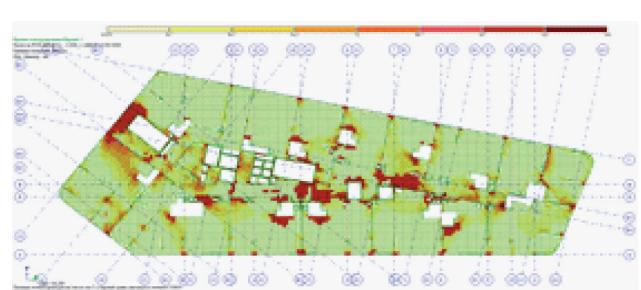

Figure 4 - Model extract (the residential complex typical floor)

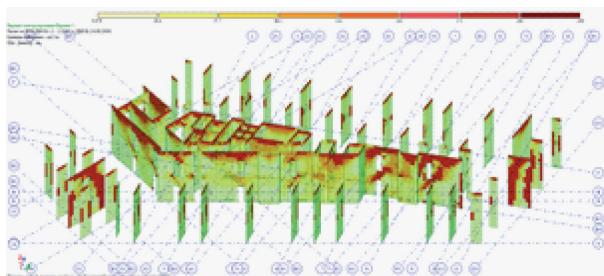
Figure 5 - Vertical displacements of residential building structures at elevation +73.200 under the temperature action (mm)

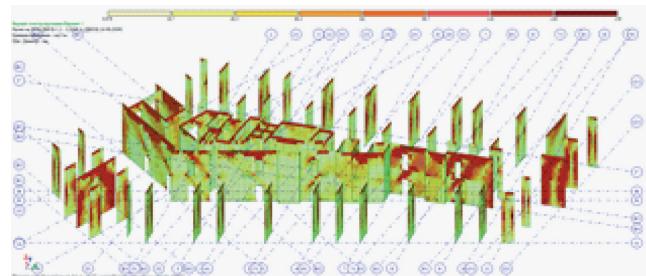

Figure 9 - The principal stresses mosaic in the N3 floor slab of the residential complex building at elevation +73.200 under the temperature action (MPa)


Figure 6 - Horizontal displacements of the residential complex building structures at elevation +73.200 under the temperature action in the X direction (mm)


Figure 10 - The required reinforcement content near the floor slabs lower face along X axis at elevation +80.830 under the temperature action (cm^2)


Figure 7 - Horizontal displacements of the residential complex building structures at elevation +73.200 under the temperature action in the Y direction (mm)


Figure 11 - The required reinforcement content near the floor slabs upper face along X axis at elevation +80.830 under the temperature action (cm^2)


Figure 12 - The required reinforcement content near the floor slabs lower face along Y axis at elevation +80.830 under the temperature action (cm^2)

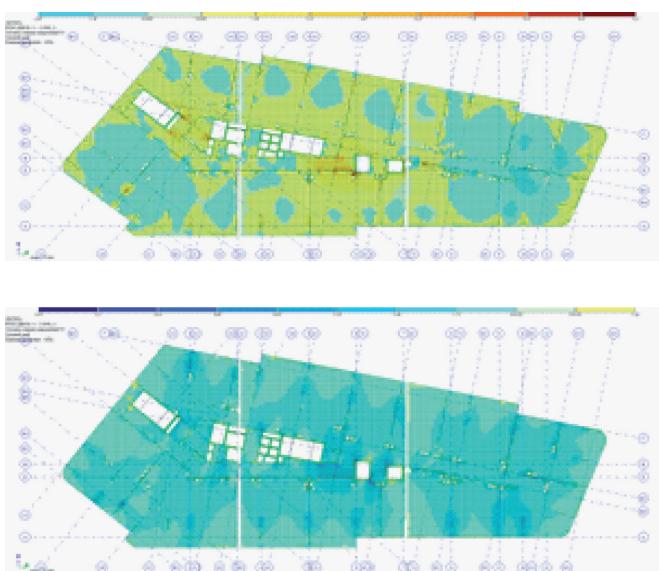

Figure 13 - The required reinforcement content near the floor slabs upper face along Y axis at elevation +80.830 under the temperature action (cm^2)

Figure 14 - Required content of walls and pylons reinforcement at elevations from +73.200 up to +80.830 in the horizontal direction under the temperature action (cm²)

Figure 11 - Required content of walls and pylons reinforcement at elevations from +73.200 up to +80.830 in the vertical direction under the temperature action (cm²)

Figure 16 - The principal stresses mosaic in the residential complex building floor slab with arranged temporary contraction joints (MPa) at elevation +73.200 under the temperature action

walls or pylons).

Therefore, taking into account the considerable length of the building, it is recommended to arrange the 200-mm wide temporary joints (concrete breaks) in the floors to reduce the temperature effects. In these areas, the floor slabs should be "backed up". It is recommended to divide the building with two temporary joints near axes 3 and 7.

Figures 16 show the results of the floor calculation for the temperature effect with regard to the division by joints. As you can see from the figures, the forces in the slabs have decreased by more than three times compared to the initial ones.

CONCLUSIONS

The temperature effects nature and magnitude have a significant influence on the building structural

solutions determination for the sizeable buildings design and construction.

The temperature effects caused by climatic, technological, operational and emergency factors are the most significant.

The main difficulty in temperature effects analysis is the description of the computational situations that correspond to the possible temperature effects manifestations at all stages of buildings construction and operation.

Taking into account the temperature effects in calculations with the modern tools application allows to avoid the structures damages at all stages of buildings construction and operation, as well as to determine the technological measures for avoiding the materials over-consumption caused by the necessity to take up the forces that may occur due to the temperature effects.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

1. Кричевский А.П. Расчет железобетонных инженерных сооружений на температурные воздействия. М.: Стройиздат, 1984. -148 с.
2. Корсун В.И. Напряженно-деформированное состояние железобетонных конструкций в условиях температурных воздействий. ДонГАСА. Макеевка. 2003. – 153 с.
3. Александровский С.В. Расчет бетонных и железобетонных конструкций на изменения температуры и влажности с учетом ползучести бетона. / Стройиздат. Москва-2004. 712 с.
4. Переображенцев А.Г. Влияние климатических воздействий на температурно-влажностное состояние поверхностных слоев многослойных наружных ограждающих конструкций зданий / Переображенцев А.Г., Груздо И.Ю. // Международный научно-исследовательский журнал. № 4(46) ч.2 – 2016. DOI: 10.18454/IRJ.2016.46.017
5. Звіт про науково-технічну роботу «Науково-технічний супровід об'єкта «Будівництво житлового комплексу з

об'єктами соціально-побутового призначення та підземним паркінгом обмеженого вулицями Причальна та Дніпровська набережна у Дарницькому районі м. Києва. Перевірочний розрахунок конструкцій будівлі» - м. Київ -2018, 86 с.

6. Науково-технічний звіт з інженерно-геологічних вишукувань. Житловий комплекс з об'єктами соціально-побутового призначення та підземним паркінгом, обмеженого вулицями Причальна та Дніпровська набережна у Дарницькому районі м. Києва. 27-18-ІГ / Товариство з обмеженою відповідальністю «Геопроект» – К.: 2018. – 261 с.

7. ДБН В.1.2.-2:2006 Навантаження і впливи. Норми проектування. / Мінрегіонбуд України. - К.: 2006 – 78 с.

8. ДБН В.1.2-14-2009 Загальні принципи забезпечення надійності та конструктивної безпеки будівель, споруд, будівельних конструкцій і основ. / Мінрегіонбуд України. - К.: 2008 – 37 с

9. ДБН В.1.1-12:2014 Будівництво у сейсмічних районах України. / Мінрегіонбуд України. - К.: 2014 – 110 с.

10. ДБН В.2.2-24:2009 Будинки і споруди. Проектування висотних житлових і громадянських будинків. / Мінрегіонбуд України. - К.: 2009 – 105 с.

11. Будівництво житлового комплексу з об'єктами соціально-побутового призначення та підземним паркінгом обмеженого вулицями Причальна та Дніпровська набережна у Дарницькому районі м. Києва. Стадія П. П/02/02/18-КБ. Житловий будинок № 1, 2, 3, 4 / ТОВ «Буд-Проект Груп». -К.: 2018..

12. Konstantin Meskouris «Baudynamik- Modelle, Methoden, Praxisbeispiele». Ernst&Sohn 1999 <http://darwin.bth.rwth-aachen.de/>

13. Eurocode 2: Worked examples. European concrete platform Available at <http://www.europeanconcrete.eu/>

14. Eurocode 2: Design of concrete structures - Part 1-1 : General rules and rules for buildings 2004 Available at: <https://law.resource.org/>

allowance for the concrete creep. Moscow: Stroizdat.

4. Perekhozhentsev, A.G., & Gruzdo, I.Yu. (2016). Influence of climate impacts on temperature and humidity state of the surface layers of the multilayer external walling buildings. International Research Journal, № 4(46), 2. doi:10.18454/IRJ.2016.46.017

5. The scientific and technical support of the construction of the residential complex with social and domestic facilities and an underground parking bounded by the Prychalna St. and Dniprovska Embankment in Darnytskyi district of Kyiv. Checkup analysis of the building structures: Scientific and technical work report. (2018). Kyiv.

6. Scientific and technical report on engineering-geological surveys. Residential complex with social and domestic facilities and an underground parking bounded by Prychalna St. and Dniprovska Embankment in Darnytskyi district of Kyiv (27-18-IG). (2018). Kyiv: TOV "Geoproekt".

7. Loads and actions. Design rules: DBN V.1.2.-2:2006. (2006). Kyiv: Minrehionbud of Ukraine.

8. General principles for the reliability and structural safety ensuring for buildings, constructions, civil structures and foundations: DBN V.1.2-14-2009. (2008). Kyiv: Minrehionbud of Ukraine.

9. Construction in seismic regions of Ukraine: DBN V.1.1-12:2014. (2014). Kyiv: Minrehionbud of Ukraine.

10. Buildings and facilities. Design of high-rise residential and public use buildings: DBN V.2.2-24:2009. (2009). Kyiv: Minrehionbud of Ukraine.

11. Construction of the residential complex with social and domestic facilities and an underground parking bounded by the Prychalna St. and Dniprovska Embankment in the Darnytskyi district of Kyiv. Stage PP P / 02/02/18-KB. Residential building № 1, 2, 3 and 4. (2018). Kyiv: TOV "Bud-Proekt Grup".

12. Meskouris, K. (1999). Baudynamik: Modelle, Methoden, Praxisbeispiele. Berlin: Ernst&Sohn. Retrieved from <http://darwin.bth.rwth-aachen.de/>

13. European concrete platform (2008). Eurocode 2: Worked examples. Retrieved from <http://www.europeanconcrete.eu/>

14. Design of concrete structures: General rules and rules for buildings: Eurocode 2 (Part 1-1). (2004). Retrieved from <https://law.resource.org/>

REFERENCES

1. Krichevskii, A.P. (1984). Temperature action analysis of reinforced concrete engineering structures. Moscow: Stroizdat.
2. Korsun, V.I. (2003). The reinforced concrete structures stress-strain state under the temperature actions. Makeevka: DonGASA.
3. Aleksandrovskii, S.V. (2004). Concrete and reinforced concrete structures analysis for temperature and humidity changes with

Стаття надійшла до редакції 07.11.2019

Doi: 10.33644/01001

УДК 624.014.2+620.172/178.2

БЕЛОКОНЬ А.М.

Інженер 1-ї категорії, Державне підприємство «Державний науково-дослідний інститут будівельних конструкцій», м. Київ, Україна, e-mail: abelokon1407@gmail.com, тел.: +38 044-249-38-73
ORCID:0000-0003-1840-2107

БЕНЬ І.В.

Інженер 1-ї категорії, Державне підприємство «Державний науково-дослідний інститут будівельних конструкцій», м. Київ, Україна, e-mail: agamer1@meta.ua, тел.: +38 099-122-71-79
ORCID:0000-0003-3386-5433

ФЕСЕНКО О.А.

Канд. технічних наук., зав. сектору Державного підприємства «Державний науково-дослідний інститут будівельних конструкцій», м. Київ, Україна, e-mail: fesenko@ndibk.gov.ua тел.: +38 249-38-19
ORCID:0000-0001-8154-2239

ЧОРНОВОЛ В.О.

Канд. технічних наук., доцент Київського Національного університету будівництва та архітектури, м. Київ, Україна, e-mail: missvik@ukr.net, тел.: +38
ORCID:0000-0002-1156-4229

ОЦІНКА НЕСУЧОЇ ЗДАТНОСТІ МЕТАЛЕВИХ ПАЛЬОВИХ СТІЙОК КАРКАСНО-МОДУЛЬНИХ КОНСТРУКЦІЙ ФОТОГАЛЬВАНІЧНОЇ ЕЛЕКТРОСТАНЦІЇ НА СЛАБКИХ ГРУНТАХ

АННОТАЦІЯ

У статті було розглянуто конструктивні рішення каркасно-модульних систем фотогальванічних сонячних електростанцій (ФЕС), що являє собою каркасно-модульну конструкцію із металевих елементів похилих ригелів та пальових стійок. Фотогальванічні сонячні електростанції є одним із різновидів підприємств відновлювальної енергетики, що інтенсивно розвивається в Україні.

У статті представлено результати проведення натурних випробувань металевих пальових стійок каркасно-модульних конструкцій фотогальванічної електростанції при дії сумарних навантажень, які включають в себе власну вагу конструкцій, обледеніння, снігове та вітрове навантаження. Проведення випробувань відбувалося відповідно до Методики, яка

включала в себе вимоги, які поширюються на будівельні конструкції будівель і споруд, що зводяться, і встановлює граничні значення прогинів і переміщень несучих конструкцій. В методиці були розроблені схеми прикладення навантажень та встановлення вимірювальних пристрій. Під час підготовки до проведення випробувань були проаналізовані інженерно-геологічні умови майданчика будівництва фотогальванічної сонячної електростанції. В результаті інженерно-геологічних вишукувань, що були проведені на майданчику, в межах ділянки дослідження було виділено п'ять інженерно-геологічних елементів, визначено склад ґрунту та його фізико-механічні характеристики. До початку випробування пальових стійок були виконані: огляд конструкцій

на предмет виявлення дефектів або пошкоджень, встановлення випробувального обладнання, встановлення вимірювальних приладів, перевірка роботоздатності всіх систем і приладів. Навантаження на стійку прикладалось ступенями із витримкою під навантаженням не менше десяти хвилин і фіксацією переміщень на кожній ступені. Під час випробування, здійснювалося прикладення навантаження на елементи стійок до настання втрати несучої здатності або досягнення елементами стійок граничних деформацій зазначених при проектуванні; виконувалася фіксація переміщень та деформацій пальових стійок, значення переміщень представлено на графіках.

За результатами випробувань було визначено несучу здатність пальових стійок на дію горизонтального навантаження, на вдавлювання та на висмикування вертикальним навантаженням. Експериментально було підтверджено можливість безпечної використання металевих конструкцій каркасно-модульних технологій у будівництві енергетичних об'єктів згідно з вимогами чинних нормативних документів.

КЛЮЧОВІ СЛОВА: несуча здатність, інженерно-геологічні умови, пальова стійка, натурні випробування, методика випробувань

ASSESSMENT OF BEARING CAPACITY OF METAL END-BEARING PILE OF FRAME MODULAR STRUCTURES OF PHOTOVOLTAIC POWER STATION ON LOOSE SOIL

ABSTRACT

The article deals with the design solutions of frame modular systems of photovoltaic solar power station (FES), which is a frame modular structure made of metal elements of inclined crossbars and end-bearing piles. Photovoltaic solar power station is one from a number of renewable energy facilities in Ukraine.

The paper reveals the results of full-scale tests of metal end-bearing piles of frame modular structures in photovoltaic power station at total load, which include gravity, icing, snow and wind loads. Testing was carried out in accordance with the Methodology, which includes requirements that apply to the construction works being erected and sets limit values for deflections and displacements of load-bearing structures. Schemes of load application and installation of measuring instruments were developed in the methodology. Engineering and geological conditions of the construction site for the photovoltaic power station were surveyed during the preparation for the tests. As a result of engineering and geodetic survey carried out at the site, five engineering-geological elements were identified within the research area, the soil composition and its physical and mechanical characteristics were determined. Prior to the test of the end-bearing piles the following steps were taken: inspection of structures to detect defects or damage,

installation of test equipment, installation of measuring instruments, inspection of the operability of all systems and devices. The load was applied to the end-bearing pile in stages with holding the load not less than ten minutes and recording displacements at each stage. During the test, the load was applied to the elements of the end-bearing pile before the loss of bearing capacity or until the elements of the end-bearing pile reach the limit deformations described in the design; the displacements and deformations of the end-bearing piles were recorded, the values of those are presented in graphs.

According to the results of the tests, the load bearing capacity of the end-bearing piles was identified for the effect of horizontal loading, for pressing and pulling off by vertical loading. The safe use of metal structures of frame modular technologies in the construction of energy facilities has been experimentally confirmed in accordance with the requirements of the current regulatory framework.

KEY WORDS: bearing capacity, geological and engineering conditions, end-bearing pile, field tests, test methodology.

ВСТУП

Впровадження енергоефективних технологій у будівництві потребує виконання вимог Технічного регламенту [1], зокрема щодо забезпечення механічного опору та стійкості конструкцій енергетичних об'єктів під дією навантажень.

Розвиток нових технологій сонячної енергетики вважається одним із багатьох ключових рішень для задоволення зростаючого у всьому світі попиту на енергію [2]. Фотогальванічні сонячні електростанції (ФЕС) є одним із різновидів підприємств відновлювальної енергетики, що інтенсивно розвивається в Україні. За даними Державного агентства з енергоефективності та енергозбереження протягом 9 місяців 2019 року було введено в експлуатацію 7638 (298 промислових та 7340 сонячних електростанцій (СЕС) домогосподарств) об'єктів відновлюваної електроенергетики загальною потужністю 2661 МВт, з них зокрема 253 об'єкти сонячної енергетики загальною потужністю 2032 МВт [3].

Конструктивна система фотогальванічних сонячних електростанцій являє собою каркасно-модульну конструкцію із металевих елементів похилих ригелів та пальових стійок. Ці елементи застосовуються найчастіше при зведенні легких конструкцій, які не вимагають капітального фундаменту. Основними перевагами пальової стійки є:

1. Простота в монтажі, не потрібує використання тяжкої будівельної техніки або трудомістких процесів по заливці бетону.
2. Широкий вибір видів профілю стійок, призначених для різних типів ґрунту і навантажень.

3. Дешевість матеріалу.
4. Можливість повторного використання. Якщо з якихось причин конструкцію потрібно перенести на нове місце, то забивні пальові стійки можна вийняти з ґрунту і встановити заново.

ПОСТАНОВКА ПРОБЕМІ

Забивні пальові стійки мають як переваги, так і недоліки. Одним із недоліків пальових стійок є обмеження по навантаженню і висоті конструкції, що зводиться. На такі пальові стійки можна встановлювати тільки легкі конструкції. В іншому разі, велика ймовірність виникнення деформацій, що можуть призводити навіть до руйнування конструкції або споруди в цілому.

Перед проведенням монтажу забивних пальових стійок варто визначити склад ґрунту, так як не для всіх видів ґрунту підходять забивні опори. Наприклад, в піщаному або заболоченому ґрунті пальові стійки не будуть надійною основою для вертикальних конструкцій. Важливо враховувати всі ці фактори, які впливають на міцність конструкції, що в свою чергу впливатиме на забезпечення відповідного рівня надійності та безпеки конструкції або споруди в цілому.

Тому єдиним шляхом вирішенням поставленої проблеми є необхідність проведення оцінки несучої здатності пальових стійок в слабких ґрунтах.

МЕТОЮ СТАТТІ є оцінка несучої здатності металевих пальових стійок, встановлених в запісоченому ґрунті на дію горизонтального навантаження, а також вертикального вдавлювального та висмикувального навантажень.

КАРКАСНО-МОДУЛЬНІ КОНСТРУКЦІЇ ФЕС

Надземна каркасно-модульна конструкція фотогальванічної електростанції складається із похилих ригелів, розташованих під кутом 25° до горизонталі і розпрок, що фіксують положення ригелів відносно стійок. На похилій площині, що утворена ригелями, передбачено встановлення фотогальванічних панелей. У кожному прольоті між

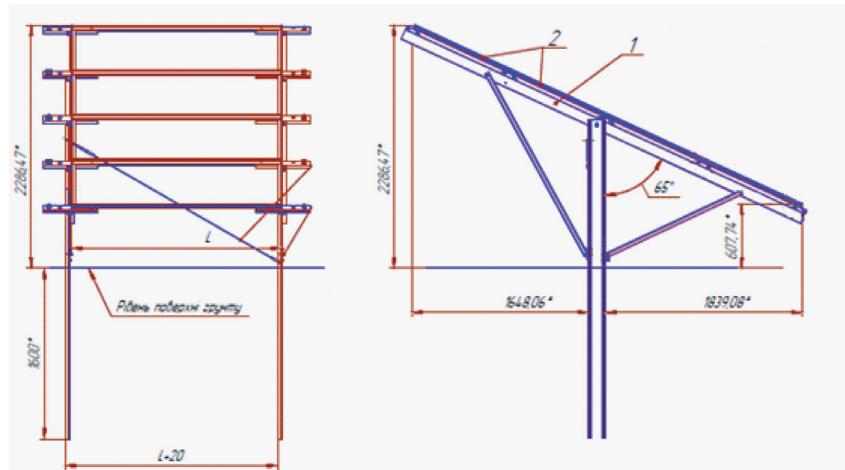
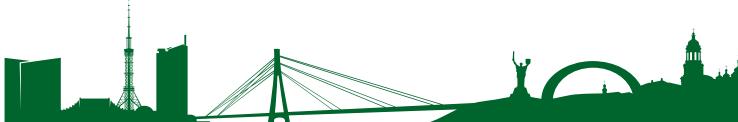


Рисунок 1 – Каркасно-модульна конструкція фотогальванічної електростанції.

1 – стійка; 2 – панель фотогальванічна


стійками передбачено влаштування чотирьох панелей. Конструктивне рішення пальових стійок наведено на рисунку 1. Стійки розташовані рядами, з кроком 2 м в кожному ряді.

Пальові стійки виконані із металевого С-подібного профілю. Розміри перерізу профілю стійок становлять 150x40x3 мм, довжина профілю – 3000 мм. Пальові стійки заглиблені в ґрунт основи на 1600 мм ударним методом.

Загальний вигляд конструкцій пальових стійок до влаштування на них фотогальванічних панелей представлено на рисунку 2.

Рисунок 2 – Загальний вигляд конструкцій пальових стійок

ІНЖЕНЕРНО-ГЕОЛОГІЧНІ УМОВИ ДІЛЯНКИ БУДІВНИЦТВА

За результатами інженерно-геологічних вишукувань було проаналізовано інженерно-геологічні умови майданчика будівництва ФЕС. Підземні води знаходяться на глибині 0,7...3,4 м. Водоносний горизонт – безнапірний. За схемою природних умов територію можна віднести до I типу за ступенем потенційного підтоплення. Підземні води неагресивні. Нормативна глибина сезонного промерзання ґрунтів складає 0,8 м. Категорія ґрунтів за сейсмічними властивостями – II (середня). Розрахункова сейсмічна інтенсивність району будівництва визначена по карті ЗСР-2004-3 [4], і становить 5 балів. Нормативна сейсмічність майданчика будівництва для ґрунтів II категорії за сейсмічними властивостями – 5 балів.

В результаті інженерно-геологічних вишукувань [5], що були проведені на майданчику, в межах ділянки досліджень було виділено 5 інженерно-геологічних елементів (ІГЕ):

ІГЕ 1. Ґрунтово-рослинний шар, запісочений;

ІГЕ 2. Суглинок жовто-бурий, жовто-сірий, пестроцвітний, запісочений, тugo-пластичний;

ІГЕ 3. Пісок жовтий, білий, мілкий, середньої щільності, з прошарками суглинку, глини;

ІГЕ 4. Глина коричнево-бура, зеленовато-сіра, щільна, напівтверда;

ІГЕ 5. Пісок жовтий, світло-сірий, білий, середньозернистий, з прошарками суглинка, середньої щільності, водонасичений.

Показники фізико-механічних властивостей ґрунтів, що визначені згідно ДСТУ Б В.2.1-3-96, ДСТУ Б В.2.1-17, ДСТУ Б В.2.1-4-96 [6-8], наведено в таблиці 1.

РЕЗУЛЬТАТИ НАТУРНИХ ВИПРОБУВАНЬ ПАЛЬОВИХ СТІЙОК

Підготовка до проведення випробувань

Для проведення випробувань пальових стійок була розроблена Методика випробувань [9], в якій були розроблені схеми встановлення вимірювальних пристрій і прикладення навантаження.

Таблиця 1 - Фізико-механічних властивостей ґрунтів

№ ІГЕ	Нормативні														Розрахункові														
	W, д.о.	W _l , д.о.	Природна вологість	Вологість на межі текучості	W _p , д.о.	І _p , д.о.	Показник текучості	P _s , кН/м ³	Щільність часток ґрунту	P, кН/м ³	Щільність	P _d , кН/м ³	Щільність сухого ґрунту	Коефіцієнт пористості	S _r , д.о.	Ступінь вологості	КФ, м/добу	Коефіцієнт фільтрації	C, кПа	Питоме зчеплення	F, град	Кут внутрішнього тертя	E, МПа	Модуль деформації	W, д.о.	І _p , д.о.	C, кПа	F, град	P, кН/м ³
1	0,17	-	-	-	-	-	-	16,2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	70	
2	0,19	0,30	0,19	0,11	0,45	27,0	18,6	16,6	0,67	0,8	0,05	13	18	10	0,26	0,47	12	18	18,8	-	-	-	-	-	-	-	-	-	
3	0,20	-	-	-	-	-	26,6	17,8	15,5	0,73	0,67	5	4	28	13	0,22	-	4	27	18,0	-	-	-	-	-	-	-	-	-
4	0,23	0,43	0,23	0,20	0,23	27,4	19,7	16,0	0,71	0,74	0,01	40	16	17	0,23	0,24	39	15	19,7	-	-	-	-	-	-	-	-	-	
5	0,25	-	-	-	-	-	26,8	19,2	16,0	0,66	0,81	10	1	36	28	-	-	1	35	19,2	-	-	-	-	-	-	-	-	-

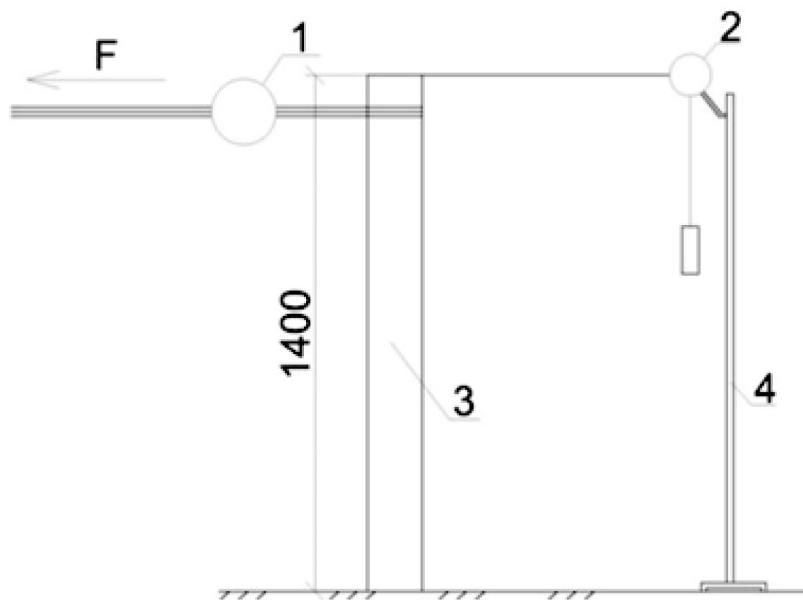
$$\alpha = 0,95$$

жень. Відповідно до Методики та ДСТУ Б В.2.6-10 [10] випробування пальтових стійок відбувалися на дію горизонтального навантаження, а також на висмикування і вдавлювання вертикальним навантаженням.

До початку випробування пальтових стійок були виконані такі підготовчі заходи:

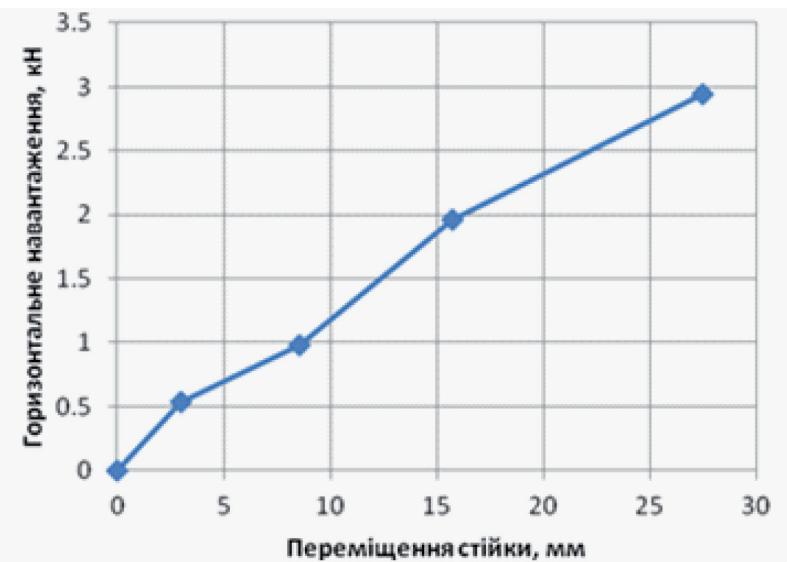
- огляд конструкцій на предмет виявлення дефектів або пошкоджень;
- встановлення випробувально-го обладнання;
- встановлення вимірювальних приладів;
- перевірка роботоздатності всіх систем і приладів.

Значення навантажень на стійки під час випробування були прийняті відповідно до ДБН В.1.2-2 [11]. Під час випробувань контролювалися значення переміщень за показаннями вимірювальних приладів для порівняння з їх граничними значеннями відповідно до ДСТУ Б 1.2-3 [12].


Результати випробування пальтової стійки на дію горизонтального навантаження

Випробування відбувалося шляхом прикладення горизонтального навантаження на рівні верхнього кінця пальтової стійки. Навантаження на стійку прикладалось ступенями по 100 кгс із витримкою під навантаженням не менше 10 хв і фіксацією переміщень на кожній ступені. Значення горизонтального навантаження на кожній ступені фіксувалось за допомогою динамометра ДОУ-5. Схема прикладення горизонтального навантаження наведена на рисунку 3.

Горизонтальне переміщення верхнього кінця стійки вимірювалось прогиноміром 6ПАО з ціною поділки 0,01 мм. Граничне значення переміщення за проектом визначене таким, що становить 20 мм.


Показання вимірювального приладу і значення переміщень верхнього навантаженого кінця пальтової стійки під час випробувань наведені на рис. 4.

Отримавши результати випробування на дію горизонтального навантаження можна зробити висновок, що: просліковується лінійна залежність між переміщенням та навантаженням.

Рисунок 3 – Схема випробування стійки на дію горизонтального навантаження.

1 – динамометр ДОУ-5; 2 – прогиномір 6ПАО;
3 – пальова стійка; 4 - штатив

Рисунок 4 – Графік переміщень пальової стійки під час випробувань на дію горизонтального навантаження

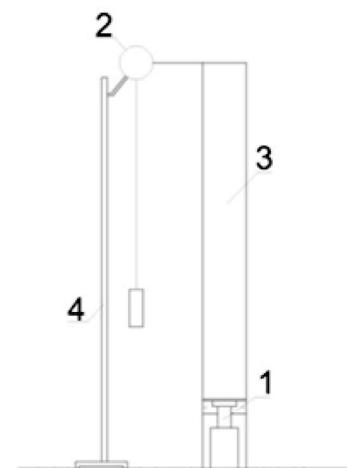
При горизонтальному навантаженні 2,94 кН (300 кгс) значення переміщення становило 27,47 мм, що перевищує граничне значення 20 мм. Робоче горизонтальне навантаження становить 2,0 кН (203,6) кгс. Стійкість пальової стійки не порушена.

Результати випробування пальової стійки на висмикування вертикальним навантаженням

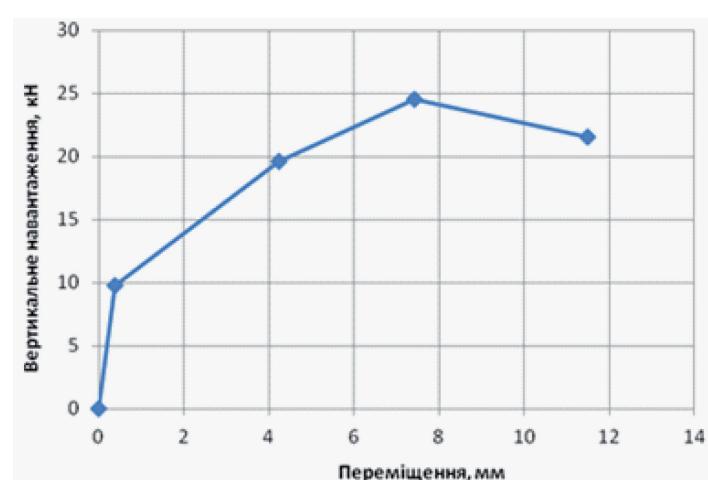
Випробування відбувалося шляхом прикладення вертикального навантаження за допомогою гідравлічного домкрату через опорний елемент, що закріплений на рівній нижньої части-

ни пальової стійки. Навантаження на стійку прикладалось ступенями по 100 кгс із витримкою під навантаженням не менше 10 хв і фіксацією переміщень на кожній ступені. Вертикальне переміщення стійки вимірювалось прогиноміром 6ПАО з ціною поділки 0,01 мм. Схема прикладення вертикального навантаження під час випробування на висмикування наведена на рисунку 5.

Випробування проводились до моменту порушення зчеплення бічної поверхні стійки із ґрунтом основи, що супроводжувалось вертикальним переміщенням стійки після раптового стрімкого зниження рівня навантаження. Графік переміщень пальової стійки під час випробувань на висмикування вертикальним навантаженням наведено на рисунку 6.


Після досягнення максимального значення навантаження 24,53 кН (2500 кгс) було зафіксовано його зниження, що супроводжувалося переміщенням пальової стійки.

Результати випробування пальової стійки на вдавлювання вертикальним навантаженням


Випробування відбувалося шляхом прикладення вертикального навантаження, що включає власну вагу фотогальванічних панелей (190 кгс) і снігове навантаження (1200 кгс), прийняте згідно з ДБН В.1.2-2 [11]. Навантажування стійки здійснювалось ступенями по 200 кгс із витримкою під навантаженням не менше 10 хв і фіксацією переміщень на кожній ступені. Вертикальне і горизонтальне переміщення стійки вимірювалось прогиномірами 6ПАО із ціною поділки 0,01 мм. Схема прикладення вертикального навантаження під час випробування на висмикування наведена на рисунку 7.

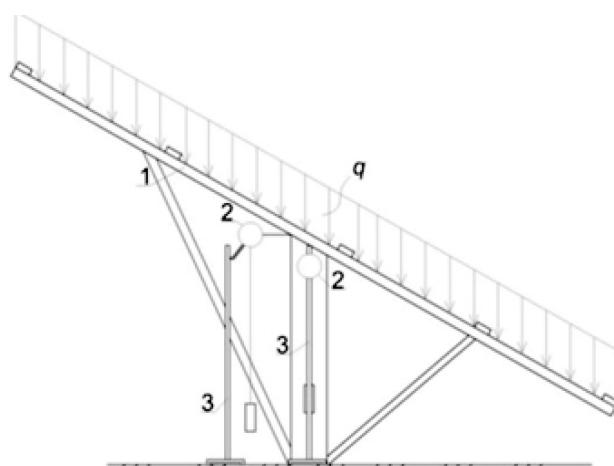

Рисунок 8 – Графік переміщень пальової стійки під час випробувань на вдавлювання вертикальним навантаженням

Рисунок 5 – Схема випробування стійки на висмикування вертикальним навантаженням
1 – гідравлічний домкрат; 2 – прогиномір 6ПАО; 3 – пальова стійка; 4 – штатив

Рисунок 6 – Графік переміщень пальової стійки під час випробувань на висмикування вертикальним навантаженням

Рисунок 7 – Схема випробування стійки на вдавлювання вертикальним навантаженням.
1 – пальова стійка ; 2 – прогиноміри 6ПАО; 3 – штативи

Графік переміщень пальової стійки під час випробувань на вдавлювання вертикальним навантаженням наведено на рисунку 8.

Значення вертикального переміщення пальової стійки під час проведення випробування знаходилось в межах 0,2 мм. При вертикальному навантаженні 2 кН, що дорівнює власній вазі фотогальванічних панелей, горизонтальних та вертикальних переміщень не зафіковано. Після прикладення вертикального навантаження 13,64 кН (1390 кгс) руйнування або втрати стійкості пальової стійки не зафіковано.

ВИСНОВКИ:

За результатами натурних випробувань металевих пальових стійок каркасно-модульних конструкцій фотогальванічної електростанції, встановлених в запісоченому ґрунті було визначено наступне:

- несуча здатність пальових стійок на дію горизонтального навантаження для даної місцевості становить 1,96 кН (200) кгс на стійку;
- несуча здатність пальових стійок на висмикування від дії вертикального навантаження становить 24,53 кН (2500) кгс;
- несуча здатність пальових стійок на вдавлювання від дії вертикального навантаження 13,64 кН (1390 кгс) забезпечена.

Аналізуючи отримані результати натурних випробувань була підтверджена техніко-економічна доцільність використання забивних пальових стійок для будівництва фотогальванічної електростанції. Отримано експериментальне підтвердження розрахункового методу, використованого при проектуванні ФЕС.

Оцінка несучої здатності пальових стійок, встановлених в запісоченому ґрунті, на дію горизонтальних та вертикальних навантажень забезпечує безпечною експлуатацію комплексу споруд ФЕС.

БІБЛІОГРАФІЧНИЙ СПИСОК

1. Технічний регламент будівельних виробів, будівель і споруд, затверджений Постановою Кабінету Міністрів України №1764 від 29 грудня 2006 р.
2. Kabir E., Kumar P., Kumar S., Adelodun A.A., Ki-Hyun Kim. Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews. 2018. Vol. 82, Part 1, P. 894-900. URL: <https://doi.org/10.1016/j.rser.2017.09.094>
3. Інформація щодо потужності та обсягів виробництва електроенергії об'єктами відновлюваної електроенергетики, яким встановлено «зелений» тариф (станом на 01.10.2019). URL: <http://saee.gov.ua/sites/default/files/VDE%20III.pdf>
4. ДБН В.1.1-12:2014 Будівництво в сейсмічних районах України. Київ: Мінрегіон України, 2014.
5. Науково-технічний висновок з інженерно-геологічних вишукувань «Нове будівництво комплексу будівель та споруд: фотогальванічна електростанція "Баранівка" на території Баранівської міської ради Баранівського р-ну Житомирської області (м. Баранівка, вул. І. Франка)», ФОП Земляний В.В., 14/19-1-ПФ, 2019, 24 с.
6. ДСТУ Б В.2.1-3-96 Ґрунти. Лабораторні випробування. Загальні положення. Київ: Державний комітет України у справах містобудування і архітектури, 1997.
7. ДСТУ Б В.2.1-17:2009 Ґрунти. Метод лабораторних визначень фізичних характеристик. Київ: Мінрегіонбуд України, 2010.
8. ДСТУ Б В.2.1-4-96. Ґрунти. Метод лабораторних визначень характеристик міцності і деформованості. Київ: Державний комітет України у справах містобудування і архітектури, 1997.
9. МЕВ-221-6860.19-001 Методика натурних випробувань по визначеню несучої здатності пальових стійок, виконаних із металевого С-подібного профілю на об'єкті: «Нове будівництво комплексу будівель та споруд: фотогальванічна електростанція "Баранівка" на території Баранівської міської ради Баранівського р-ну Житомирської області (м. Баранівка, вул. І. Франка)». Київ: ДП НДІБК, 2019, 10 с.
10. ДСТУ Б В.2.6-10-96 Конструкції будинків і споруд. Конструкції сталеві будівельні. Методи випробування навантаженням. Київ: Державний комітет України у справах містобудування і архітектури, 1997.
11. ДБН В.1.2-2:2006 Система забезпечення надійності та безпеки будівельних об'єктів. Навантаження і впливи. Норми проектування. Київ: Мінбуд України, 2006.
12. ДСТУ Б 1.2-3:2006 Система забезпечення надійності та безпеки будівельних об'єктів. Прогини і переміщення. Вимоги проектування. Київ: Мінбуд України, 2006.

REFERENCES

1. Cabinet of Ministers of Ukraine. Technical regulation of construction products, buildings and structures. Decree No. 1764. (2006).
2. Kabir, E., Kumar, P., Kumar, S., Adelodun, A.A., & Ki-Hyun, Kim. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82(1), 894-

900. Retrieved from: <https://doi.org/10.1016/j.rser.2017.09.094>

- 3. Information on the capacity and volumes of electricity production by the renewable energy generation facilities operating at "green" tariff (as of 01.10.2019). (2019). Retrieved from <http://saee.gov.ua/sites/default/files/VDE%20III.pdf>
- 4. Construction in seismic regions of Ukraine: DBN V.1.1-12:2014. (2014).
- 5. Zemlianyi, V.V. (2019). Scientific and technical conclusion on engineering-geological surveys "New construction of the buildings and structures complex - the photovoltaic power station "Baranivka" in the territory of the Baranivka Town council of the Baranivskyi District of Zhytomyrska Oblast (Town of Baranivka, I.Franka St.)" (14/19-1-ПФ).
- 6. Soils. Laboratory testing. General requirements: DSTU B V.2.1-3-96. (1997).
- 7. Soils. Laboratory methods for determination of physical characteristics: DSTU B V.2.1-17:2009. (2010).
- 8. Soils. Laboratory methods for determination of the strength and strain characteristics: DSTU B V.2.1-4-96. (1997).
- 9. The field tests method for determining the bearing capacity of end-bearing piles made of metal C-shaped profile at the site "New construction of the buildings and structures complex - the photovoltaic power station "Baranivka" in the territory of the Baranivka Town council of the Baranivskyi District of Zhytomyrska Oblast (Town of Baranivka, I.Franka St.)" (MEB-221-6860.19-001). (2019). Kyiv: SE NDIBK.
- 10. Constructions of buildings and structures. Steel building constructions. Loading test methods: DSTU B V.2.6-10-96. (1997).
- 11. The system of reliability and safety assurance in building projects. Loads and impacts. Design rules: DBN V.1.2-2:2006. (2006).
- 12. The system of reliability and safety assurance in building projects. Deflections and displacements. Design rules: DSTU B 1.2-3:2006. (2007).

Стаття надійшла до редакції 29.11.2019