

# Doi: 10.33644/01002

# УДК 624.012:624.046



#### **GURKIVSKYI O.B.**

PhD, State Enterprise "The State Research Institute of Building Constructions",

Kyiv, Ukraine

phone: +38 (044) 2493775 e-mail: alex 84m@ukr.net ORCID: 0000-0002-2411-5529



#### **BOLOTOV A. Yu.**

Researcher, State Enterprise "The State Research Institute of Building Constructions",

Kyiv Ukraine

phone: +38 (044) 2493775 e-mail: viperwk@gmail.com ORCID: 0000-0002-4102-3079

# THE CAST-IN-PLACE REINFORCED CONCRETE FRAME CALCULATIONS FOR TEMPERATURE EFFECTS AT ALL CONSTRUCTION AND OPERATION STAGES IN MULTI-STOREY BUILDING

#### **ABSTRACT**

In multi-storey buildings built earlier, the temperature actions did not have a significant effect, since the external and internal structures large mass and practically constant internal temperatures did not cause the problems with the elements different elongation. The situation became much more complicated for modern high-rise buildings with statically indeterminate structures of impressive dimensions. External fencing structures are attached to internal structures; buildings have large heights etc. As a result, it becomes necessary to take into account the temperature effects. When designing buildings, it is obligatory to take into account climatic temperature effects and operational thermal effects, which must be neutralized primarily by isolation of heat sources and adjacent structures. The temperature difference depends on the building functional purpose, its location, orientation with respect to the cardinal points, the internal temperature conditions, as well as the surface and finish of the enclosing and supporting structures. The structures are the most vulnerable to the temperature exposure during the building construction. This is caused by the changes in air temperature, in which there are quite regular periodic fluctuations with annual and daily periods. Random fluctuations associated with changes in the weather over small periods of time (several days) are superimposed on periodic fluctuations. Currently, there are a sufficient number of calculation tools for taking into account the temperature effects in the buildings designs. The main difficulty in the calculations is the description of design situations corresponding to possible temperature effects manifestations at all stages of buildings construction and operation. The paper gives an example of taking into account the temperature effect when calculating the building frame with significant geometric dimensions both in plan and in height. So, in the framework of the high-rise building calculations in Kiev, we analyzed the temperature effects during its construction in order to determine the structures stress-strain state. The temperature effects calculation was performed for the building construction stage (for a time before closing the heating circuit). It was recommended to divide this building into two temporary joints, which, therefore, allowed reducing forces in the slabs compared with the initial ones by more than three times. In the design and construction of buildings of stately proportions, the temperature effects nature and magnitude have a significant influence on the building structural solutions determination. The temperature effects due to climatic, technological, operational and emergency factors are the most significant. The temperature effects consideration in calculations using various modern tools allows preventing damages to structures at all stages of the buildings construction and operation and identifying technological measures to avoid the materials overexpenditure due to the necessity of taking up forces that may occur during temperature actions.

**KEYWORDS:** temperature effect; calculation for temperature effects; calculation of a high-rise building; cast-in-place reinforced concrete frame; determination of stress-strain state; economic feasibility



# РОЗРАХУНОК НА ТЕМПЕРАТУРНІ ВПЛИви монолітного залізобетонного КАРКАСУ БАГАТОПОВЕРХОВОЇ БУДІВЛІ НА УСІХ СТАДІЯХ ЗВЕДЕННЯ ТА ЕКС-ПЛУАТАЦІЇ

#### **КІЦАТОНА**

У багатоповерхових будівлях, побудованих раніше, температурні впливи не мали значного впливу, так як при великій масі зовнішніх і внутрішніх конструкцій і при практично постійних внутрішніх температурах не існувало проблеми різниці подовження елементів. Ситуація значно ускладнюється для сучасних багатоповерхових будівель із статично невизначеними конструкціями значних розмірів. До внутрішніх конструкцій кріпляться конструкції зовнішнього огородження, будівлі мають велику висоту і т.п. В результаті виникає необхідність врахування температурних впливів. При проектуванні будинків треба обов'язково враховувати кліматичні температурні впливи, експлуатаційні теплові впливи, які необхідно нейтралізувати насамперед ізоляцією джерел виділення тепла і прилеглих конструкцій. Різниця температур залежить від функціонального призначення будівлі, його місця розташування, орієнтації по відношенню до країн світу, внутрішнього температурного режиму, поверхні і опорядження огороджувальних та несучих конструкцій. Але найбільш вразливі конструкції при температурному впливі під час зведення будівель. Це обумовлено змінами температури повітря, в яких є цілком закономірні періодичні коливання з річним і добовим періодом. На періодичні коливання накладаються випадкові коливання, пов'язані зі зміною погоди на невеликих відрізках часу (кілька днів). На даний час існує достатня кількість розрахункових інструментів щодо врахування температурного впливу при конструюванні будівель. Основною ж складністю у розрахунках є опис розрахункових ситуацій, що відповідають можливим проявам температурних впливів на усіх стадіях зведення та експлуатації будівель. В статті наведено приклад врахування температурного впливу при розрахунках каркасу будівлі із значними геометричними розмірами як у плані, так і по висоті. Так в рамках розрахунків висотної будівлі в м. Києві нами було проведено розрахунок на температурні впливи під час будівництва, з метою визначення напруженодеформованого стану конструкцій. Розрахунок на температурні впливи було виконано для стадії зведення будівлі (на час перед закриттям опалювального контуру). Дану будівлю рекомендується розділити двома тимчасовими швами. Що в свою чергу дозволило зменшити зусилля у плитах у порівнянні із початковими понад у три рази. При проектуванні та зведенні будівель значних розмірів значний вплив на визначення конструктивних рішень будівлі мають характер та величина температурних впливів. Найбільшими є температурні впливи обумовлені кліматичним, технологічними, експлуатаційними та аварійними факторами. Врахування температурних впливів у розрахунках за допомогою сучасних засобів дозволяє уникати ушкоджень конструкцій на усіх стадіях зведення та експлуатації будівель, визначати технологічні заходи, що дозволяють уникати перевитрат матеріалів, обумовлених необхідністю сприйняття зусиль, які можуть виникати при температурних впливах.

**КЛЮЧОВІ СЛОВА:** температурний вплив; розрахунок на температурні впливи; розрахунок висотної будівлі; монолітний залізобетонний каркас; визначення напружено-деформованого стану; економічна обґрунтованість

РАСЧЕТ НА ТЕМПЕРАТУРНЫЕ ВОЗЛЕЙСмонолитного железобетон-ТВИЯ НОГО **KAPKACA МНОГОЭТАЖНОГО** ЗДАНИЯ НА ВСЕХ СТАДИЯХ ВОЗВЕДЕНИЯ И ЭКСПЛУАТАЦИИ

#### **АННОТАЦИЯ**

В многоэтажных зданиях, построенных ранее, температурные воздействия не имели значительного влияния, так как при большой массе внешних и внутренних конструкций и при практически постоянных внутренних температурах не существовало проблемы разницы удлинение элементов. Ситуация значительно усложняется для современных многоэтажных зданий со статически неопределимыми конструкциями внушительных размеров. К внутренним конструкциям крепятся конструкции наружного ограждения, здания имеют большую высоту и т.п. В результате возникает необходимость учета температурных воздействий. При проектировании зданий надо обязательно учитывать климатические температурные воздействия, эксплуатационные тепловые воздействия, которые необходимо нейтрализовать в первую очередь изоляцией источников выделения тепла и прилегающих конструкций. Разница температур зависит от функционального назначения здания, его местоположения, ориентации по отношению к сторонам света, внутреннего температурного режима, поверхности и отделки ограждающих и несущих конструкций. Но наиболее уязвимые конструкции при температурном воздействии при возведении зданий. Это обусловлено изменениями температуры воздуха, в которых вполне закономерные периодические колебания с годовым и суточным периодом. На периодические колебания накладываются случайные колебания, связанные с изменением погоды на небольших отрезках времени



(несколько дней). В настоящее время существует достаточное количество расчетных инструментов по учету температурного воздействия при конструировании зданий. Основной же сложностью в расчетах является описание расчетных ситуаций, соответствующих возможным проявлениям температурных воздействий на всех стадиях возведения и эксплуатации зданий. в статье приведен пример учета температурного воздействия при расчетах каркаса здания со значительными геометрическими размерами как в плане, так и по высоте. Так, в рамках расчетов высотного здания в г. Киеве. нами был проведен расчет на температурные воздействия при строительстве с целью определения напряженно-деформированного состояния конструкций. Расчет на температурные воздействия был выполнен для стадии возведения здания (на время перед закрытием отопительного контура). Данное здание рекомендуется разделить двумя временными швами, что в свою очередь позволило уменьшить усилия в плитах по сравнению с начальными более чем в три раза. При проектировании и строительстве зданий внушительных размеров значительное влияние на определение конструктивных решений здания имеют характер и величина температурных воздействий. Наиболее значимыми являются температурные воздействия, обусловлены климатическим, технологическими, эксплуатационными и аварийными факторами. Учет температурных воздействий в расчетах с помощью современных средств позволяет избегать повреждений конструкций на всех стадиях возведения и эксплуатации зданий, определять технологические меры, позволяющие избегать перерасхода материалов, обусловленных необходимостью восприятия усилий, которые могут возникать при температурных воздействиях.

**КЛЮЧЕВЫЕ СЛОВА:** температурное воздействие; расчет на температурные воздействия; расчет высотного здания; монолитный железобетонный каркас; определения напряженнодеформированного состояния; экономическая обоснованность

# INTRODUCTION

In multi-storey buildings previously constructed, temperatures did not have any significant effect, since the external and internal structures of large mass and practically constant internal temperatures did not cause any problems with the elements elongation difference. The situation is much more complicated in modern multi-storey buildings with statically indeterminate structures of considerable size. Envelope structures are attached to structural elements; buildings are of great heights etc. As a result, there is a necessity of taking into account the temperature effects.

#### **PURPOSE**

The temperature effects [1, 2 and 3] can be caused by the following reasons:

- climatic in the form of temperature difference during the day and year;
- technological in the process of curing concrete, when heated in winter;
- operational due to the equipment, such as furnaces, boilers etc.;
- due to explosion, fire or firefighting.

When designing a building, it is necessary to take into account the climatic temperature effects and operational thermal effects, which should be counteracted, first of all, by the heat sources and adjacent structures isolation.

The temperature impact on a structure can be represented as:

- the difference in the structure or its element relative temperature with respect to the conditional temperature;
- the temperature difference of the structure or element intersection surfaces, which is defined as the temperature difference of the outer and inner surfaces;
- the temperature difference of a whole structural element, which is determined by the average temperatures difference in the individual elements.

Temperature effect is included into the group of so-called internal deformations along with shrinkage, compression and settlement of supports [2]. These actions - deformations and stresses - depend first of all on the material properties and the attachment conditions of the individual elements, the whole structure or its elements.

### **TASKS**

In terms of temperature actions, a building can be divided into two parts such as an underground one, that is, a part below the ground level, and a building superstructure. The underground building part is not only massive, but also naturally isolated by the surrounding soil. Therefore, the temperature effects here are not so significant if compared to those in the superstructure. Blocks separated by contraction joints are selected from the condition of concrete shrinkage and creep, as well as of the uneven settlement possible effects.

The surface part is subject to temperature effects in two directions - horizontal and vertical. Horizontal effects have always been given attention; these effects are usually within acceptable limits when the building is divided by expansion joints into separate small-scale elements, and a system providing stability (subsystem transmitting a horizontal impact) is constructed in such a way that the horizontal temperature load does not cause any significant stress or displacement in it.

The vertical expansion in the vertical direction was



not given so much attention in buildings constructed earlier, because the structures had a small height, a greater weight and the structural system integrity (either a system with self-bearing brick walls, or a frame system). There are many reasons to pay more attention to the elements elongation in the vertical direction in the modern high-rise buildings. Primarily, a smaller weight of buildings leads to the significant temperature fluctuations in structures.

The internal rooms are air-conditioned, so interior structures have a more or less constant temperature, and when the ambient temperature fluctuates, the temperature difference of the structure inner and outer elements grows.

The temperature difference naturally depends on the building use, location, orientation with respect to cardinal points, internal temperature conditions, as well as envelope and structural elements surface and finishing [4].

But the structures are mostly subject to temperature effects during the construction. This is due to the air temperature changes with quite regular periodic fluctuations having the annual and daily periods. The random fluctuations associated with the weather change during the small periods of time (several days) are imposed on the periodic fluctuations.

#### MAIN PART

Currently, there are a great number of calculation tools that allow taking into account the temperature effects during the buildings designing [3, 13 and 14]. The main difficulty of the calculation is the description of design situations corresponding to the potential demonstrations of temperature effects at all stages of building construction and operation.

Below is an example of how temperature is taken into account when calculating a frame with the largescale geometric dimensions both in plan and height.

Thus, within the framework of designing the high-rise building in Kyiv [5 and 6], we analyzed the temperature effects during the construction in order to determine the structures stress-strain state.

The building of a residential complex with social and domestic facilities and underground parking [11] has a complex shape in plan, axes dimensions of 76.68 m x 28.74 m, 26 residential floors and one basement floor.

The residential complex structural scheme includes a monolithic reinforced concrete frame with vertical diaphragms and stiffening cores (i.e. the braced frame with vertical reinforced concrete diaphragms). The heights of parking lot and the 1st floor are 3.8 m and 4.2 m, respectively, heights of the 24th and 25th floors are 3.6 m, and the typical floor height is 3.0 m.

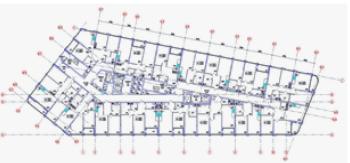
Cast-in-place reinforced concrete building floors are 200 mm thick and cast-in-place reinforced concrete walls of C25/30 concrete grade are up to 350 mm thick. Reinforcing steel of classes A500C

and A240C corresponds to DSTU 3760: 2006.

Pylons of rectangular section and sizes from 300x1200 mm to 400x2200 mm are made of C35/40 concrete grade; classes A500C and A240C reinforcing steel corresponds to DSTU3760: 2006.

The foundation for the building is composed of CFA concrete piles with a diameter of 620 mm (C20/25 (B25) concrete grade and classes A500C and A240C reinforcing steel according to DSTU 3760: 2006) united by a 1400 mm high cast-in-place ground-beam (C25/30 (B30) concrete grade and classes A500C and A240C reinforcing steel according to DSTU 3760: 2006).

The plan of a typical building floor is shown in Fig.1.


The calculation of the three-dimensional computer model was carried out using the software package "Lira-CAD 2017", which is a computer system for structural analysis and design.

The design scheme is adopted in the form of a spatial system consisting of core elements that simulate the work of columns, girders and plate elements simulating the floor slabs, walls, diaphragms and foundations work.

For the structures calculations the scheme, at which the maximum forces act in the building structural elements, was adopted as a basis for the calculations of main load combinations under the wind action in two directions and of emergency load combinations.

The loads and impacts for the building structures were taken in accordance with DBN V.1.2.-2:2006 [7], taking into account the requirements of DBN V. 1.2-14-2009 [8], DBN V. 1.1-12:2014 [9], DBN V. 2.2-24:2009 [10]. In the calculation, the CC3 class of structure responsibility and the structural responsibility category according to DBN V. 1.2-14-2009 [8] were taken into account by applying the corresponding coefficients of reliability (when calculating for the basic load combinations, the coefficients 1.15... 1.25 were taken to calculate for the first group of limit states and coefficient 1.0 to calculate for the second group of limit states; when calculating for the emergency load combinations, the coefficient 1.05 was taken). The seismic load value was taken in accordance with [9] and amounted to 7 points.

The characteristic wind load for the 1st wind



**Figure 1** - Plan of a typical building floor



district is 370 Pa and the terrain type is IV.

The characteristic snow load for the 5th snow region is 1550 Pa.

The cross-sections of building reinforced concrete elements were checked according to the forces values obtained in the analysis of the "base-foundation-upper structure" system model

Figures 5 - 15 show the results of the vertical displacements calculation in the floor slab level at elevation +73.200 and the moment forces in the floor slab under the temperature effects.

The temperature effects were calculated for the building construction stage (for a time before closing the heating circuit).

According to DBN V.1.2.2-2006 "Loads and actions" Section 11, for the temperature effects calculation the characteristic values of average temperatures changes along the element cross section for the warm  $\Delta t_w$  and cold  $\Delta t_c$  seasons, respectively, should be determined:

$$\Delta t_{w,loop} = t_w - t_{oc} = t_{ew} + \theta_1 + \theta_4 - t_{oc} = 28 + 6 + 8.5 \cdot 15 = 27.5 \, ^{\circ}C$$
 (1)

$$\Delta t_{c,loop} = t_c - t_{ow} = t_{ec} - 0.5\theta_1 - t_{ow} = = -20 - 3 - 0 = -23 °C \Delta t_{w,inner} = t_w - t_{oc} = t_{ew} - t_{oc} =$$
(2)

 $= 28 - 15 = 13 \, ^{\circ}\text{C}$ 

$$\Delta t_{c,inner} = t_c - t_{ow} = t_{ec} - t_{ow} = = -20 - 0 = -20^{\circ} C$$
 (4)

(3)

where  $t_w$  and  $t_c$  are the average temperatures characteristic values along the element section during the warm and cold seasons (taken according to DBN V.1.2.2-2006 table 11.1) and  $t_{ow}$  and  $t_{oc}$  are the initial temperatures in warm and cold seasons.

The daily average ambient air temperatures in warm  $t_{ew}$  and cold  $t_{ee}$  seasons may be taken as 28 °C and -20 °C, respectively.

The initial temperature corresponding to the structure or its part closure in a complete system, in warm  $t_{ow}$  and cold  $t_{oc}$  seasons may be taken as  $t_{ow} = 0$  °C and  $t_{oc} = 15$  °C.

Figure 8 - The principal stresses mosaic in the N1 floor slab of the residential complex building at elevation +73.200 under the temperature action (MPa)

The obtained calculation results show an approximate picture of the temperature distribution. The actual distribution will not have significant drops, and the required reinforcement content will be lower. However, the pattern of forces distribution and required reinforcement content will not change dramatically. In the real conditions, the temperature action at the construction stage before the heating circuit closure can lead to the damages occurrence in the form of cracks and spalling in structures (floors,

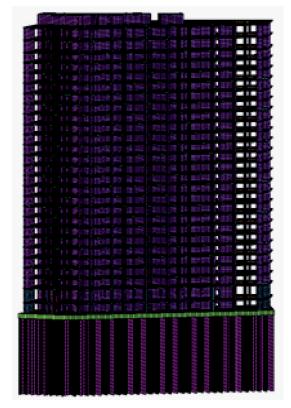



Figure 2 - General view of the building structural design

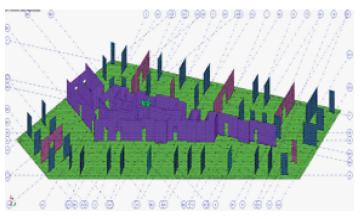
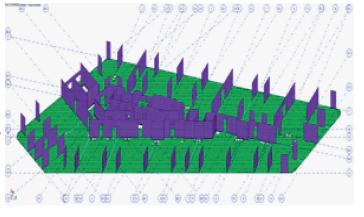
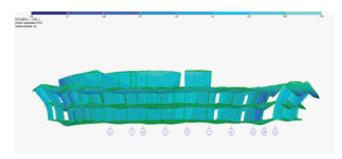
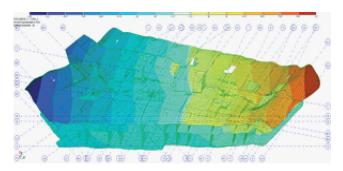





Figure 3 - Model extract (the residential complex basement floor)




**Figure 4** - Model extract (the residential complex typical floor)





**Figure 5** - Vertical displacements of residential building structures at elevation +73.200 under the temperature action (mm)



**Figure 6** - Horizontal displacements of the residential complex building structures at elevation +73.200 under the temperature action in the X direction (mm)

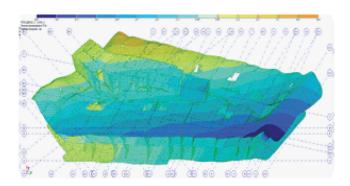



Figure 7 - Horizontal displacements of the residential complex building structures at elevation +73.200 under the temperature action in the Y direction (mm)

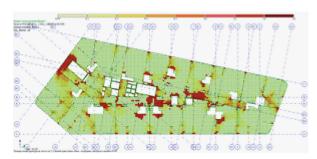
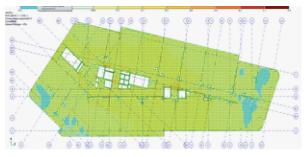




Figure 12 - The required reinforcement content near the floor slabs lower face along Y axis at elevation +80.830 under the temperature action (cm²)



**Figure 9** - The principal stresses mosaic in the N3 floor slab of the residential complex building at elevation +73.200 under the temperature action (MPa)

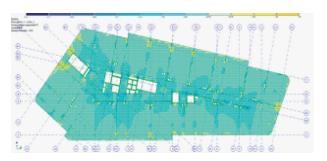



Figure 10 - The required reinforcement content near the floor slabs lower face along X axis at elevation +80.830 under the temperature action (cm<sup>2</sup>)

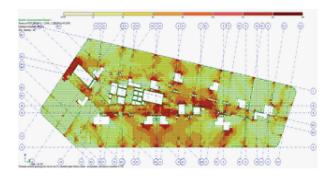



Figure 11 - The required reinforcement content near the floor slabs upper face along X axis at elevation +80.830 under the temperature action (cm<sup>2</sup>)

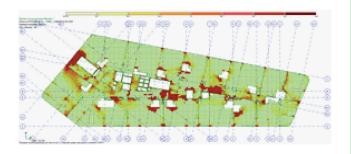
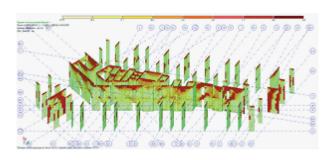




Figure 13 - The required reinforcement content near the floor slabs upper face along Y axis at elevation +80.830 under the temperature action (cm<sup>2</sup>)





**Figure 14** - Required content of walls and pylons reinforcement at elevations from +73.200 up to +80.830 in the horizontal direction under the temperature action (cm²)

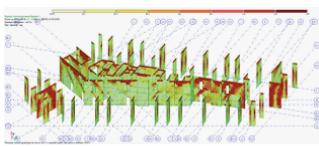
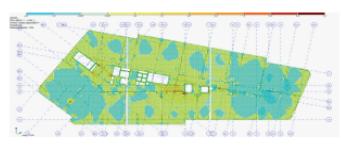
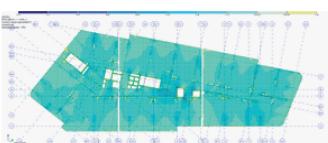





Figure 11 - Required content of walls and pylons reinforcement at elevations from +73.200 up to +80.830 in the vertical direction under the temperature action (cm<sup>2</sup>)





**Figure 16** - The principal stresses mosaic in the residential complex building floor slab with arranged temporary contraction joints (MPa) at elevation+73.200 under the temperature action

walls or pylons).

Therefore, taking into account the considerable length of the building, it is recommended to arrange the 200-mm wide temporary joints (concrete breaks) in the floors to reduce the temperature effects. In these areas, the floor slabs should be "backed up". It is recommended to divide the building with two temporary joints near axes 3 and 7.

Figures 16 show the results of the floor calculation for the temperature effect with regard to the division by joints. As you can see from the figures, the forces in the slabs have decreased by more than three times compared to the initial ones.

## **CONCLUSIONS**

The temperature effects nature and magnitude have a significant influence on the building structural

solutions determination for the sizeable buildings design and construction.

The temperature effects caused by climatic, technological, operational and emergency factors are the most significant.

The main difficulty in temperature effects analysis is the description of the computational situations that correspond to the possible temperature effects manifestations at all stages of buildings construction and operation.

Taking into account the temperature effects in calculations with the modern tools application allows to avoid the structures damages at all stages of buildings construction and operation, as well as to determine the technological measures for avoiding the materials over-consumption caused by the necessity to take up the forces that may occur due to the temperature effects.

## СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- 1. Кричевский А.П. Расчет железобетонных инженерных сооружений на температурне воздействия. М.: Стройиздат, 1984. -148 с.
- 2. Корсун В.И. Напряженно-деформированное состояние железобетонных конструкций в условиях температурных воздействий. ДонГАСА. Макеевка. 2003. 153 с.
- 3. Александровский С.В. Расчёт бетонных и железобетонных конструкций на изменения температуры и влажности с учётом ползучести бетона. / Стройиздат. Москва-2004. 712 с.
- Перехоженцев А.Г. Влияние климатических воздействий на температурно-влажностное состояние поверхностных слоев многослойных наружных ограждающих конструкций зданий / Перехоженцев А.Г., Груздо И.Ю. // Международный научноисследовательский журнал. № 4(46) ч.2 2016. DOI: 10.18454/IRJ.2016.46.017
- 5. Звіт про науково-технічну роботу «Науково-технічний супровід об'єкта «Будівництво житлового комплексу з



- об'єктами соціально-побутового призначення та підземним паркінгом обмеженого вулицями Причальна та Дніпровська набережна у Дарницькому районі м. Києва. Перевірочний розрахунок конструкцій будівлі» м. Київ -2018, 86 с.
- 6. Науково-технічний звіт з інженерногеологічних вишукувань. Житловий комплекс з об'єктами соціально-побутового призначення та підземним паркінгом, обмеженого вулицями Причальна та Дніпровська набережна у Дарницькому районі м. Києва. 27-18-ІГ / Товариство з обмеженою відповідальністю «Геопроект» – К.: 2018. – 261 с.
- 7. ДБН В.1.2.-2:2006 Навантаження і впливи. Норми проектування. / Мінрегіонбуд України. К.: 2006 78 с.
- 8. ДБН В.1.2-14-2009 Загальні принципи забезпечення надійності та конструктивної безпеки будівель, споруд, будівельних конструкцій і основ. / Мінрегіонбуд України. К.: 2008 37 с
- ДБН В.1.1-12:2014 Будівництво у сейсмічних районах України. / Мінрегіонбуд України.
   К.: 2014 110 с.
- 10. ДБН В.2.2-24:2009 Будинки і споруди. Проектування висотних житлових і громадянських будинків. / Мінрегіонбуд України. К.: 2009 105 с.
- 11. Будівництво житлового комплексу з об'єктами соціально-побутового призначення та підземним паркінгом обмеженого вулицями Причальна та Дніпровська набережна у Дарницькому районі м. Києва. Стадія П. П/02/02/18-КБ. Житловий будинок № 1, 2, 3, 4 / ТОВ «Буд-Проект Груп». –К.: 2018..
- 12. Konstantin Meskouris «Baudynamik- Modelle, Methoden, Praxisbeispiele». Ernst&Sohn 1999 http://darwin.bth.rwth-aachen.de/
- 13. Eurocode 2: Worked examples. European concrete platform Available at http://www.europeanconcrete.eu/
- 14. Eurocode 2: Design of concrete structures Part 1-1: General rules and rules for buildings 2004 Available at: https://law.resource.org/

## REFERENCES

- 1. Krichevskii, A.P. (1984). Temperature action analysis of reinforced concrete engineering structures. Moscow: Stroitzdat.
- 2. Korsun, V.I. (2003). The reinforced concrete structures stress-strain state under the temperature actions. Makeevka: DonGASA.
- 3. Aleksandrovskii, S.V. (2004). Concrete and reinforced concrete structures analysis for temperature and humidity changes with

- allowance for the concrete creep. Moscow: Stroiizdat.
- 4. Perekhozhentsev, A.G., & Gruzdo, I.Yu. (2016). Influence of climate impacts on temperature and humidity state of the surface layers of the multilayer external walling buildings. International Research Journal, № 4(46), 2. doi:10.18454/IRJ.2016.46.017
- 5. The scientific and technical support of the construction of the residential complex with social and domestic facilities and an underground parking bounded by the Prychalna St. and Dniprovska Embankment in Darnytskyi district of Kyiv. Checkup analysis of the building structures: Scientific and technical work report. (2018). Kyiv.
- 6. Scientific and technical report on engineeringgeological surveys. Residential complex with social and domestic facilities and an underground parking bounded by Prychalna St. and Dniprovska Embankment in Darnytskyi district of Kyiv (27-18-IG). (2018). Kyiv: TOV "Geoproekt".
- 7. Loads and actions. Design rules: DBN V.1.2.-2:2006. (2006). Kyiv: Minrehionbud of Ukraine.
- 8. General principles for the reliability and structural safety ensuring for buildings, constructions, civil structures and foundations: DBN V.1.2-14-2009. (2008). Kyiv: Minrehionbud of Ukraine.
- 9. Construction in seismic regions of Ukraine: DBN V.1.1-12:2014. (2014). Kyiv: Minrehionbud of Ukraine.
- 10. Buildings and facilities. Design of highrise residential and public use buildings: DBN V.2.2-24:2009. (2009). Kyiv: Minrehionbud of Ukraine.
- 11. Construction of the residential complex with social and domestic facilities and an underground parking bounded by the Prychalna St. and Dniprovska Embankment in the Darnytskyi district of Kyiv. Stage PP P / 02/02/18-KB. Residential building № 1, 2, 3 and 4. (2018). Kyiv: TOV "Bud-Proekt Grup".
- 12. Meskouris, K. (1999). Baudynamik: Modelle, Methoden, Praxisbeispiele. Berlin: Ernst&Sohn. Retrieved from http://darwin.bth.rwth-aachen.de/
- 13. European concrete platform (2008). Eurocode 2: Worked examples. Retrieved from http://www.europeanconcrete.eu/
- 14. Design of concrete structures: General rules and rules for buildings: Eurocode 2 (Part 1-1). (2004). Retrieved from https://law.resource.org/

Стаття надійшла до редакції 07.11.2019