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PO3PAXYHOK ITIO3AIIEHTPOBO CTUCHYTHUX
N [HYYKHUX 3AAISOBETOHHHMX EAEMEHTIB IS
3A METO/ZOM “PEAABHOI” KPUBU3HU

AHOTAIIIA

Meros BHU3HAYEHHA HECY4ol 34aTHOCTI THYYKHX
HO3aIleHTPOBO CTHCHYTHX EAEMEHTIB i3 ypaxyBaHHAM
epeKTiB APYroro mopsAjgKy y PO3TOPHYTOMY BHTIASAL
YUHHUMH JePKaBHUMH OyZiBeABHHMMH HOPMaMH
YKpaiHu He IpeACTaBACHO. 32 €BPONEHCHKUMH HOP-
MaMM JASl BU3HAYEHHS HECY4ol 3J4aTHOCTI I'HYYKHX
3aAi300€TOHHHUX EAEMEHTIB 3 ypaxyBaHHAM ePEKTIB
APYroro HopsiAKy 3aCTOCOBYIOTh METO/ HOMIHAABHOI
KpuBU3HH. Bin 6a3yeTbcd Ha BHKOPHCTAHHI B PO3-
paxyHKax IPOTHO3HOI KPUBU3HHU (IIPOTHHY) IPH
JAOCATHEHH] TI'paHUYHUX JedopMaliiii cTucky 6ero-
HYy 1 gepopmanii rpaHuI Tekydocti apmarypu. llei
MEeTO4 Ma€ IAuN psg HegoAlkiB. Ilepimr 3a Bce,
BTpaTa HeCyd4ol 34aTHOCTI THYYKUX EAEMEHTIB (BTpa-
Ta CTIMKOCTI), AK IPABUAO, BiZOYBAE€TbCA IIPH 3HAY-
HO MEHIIMX 3HAYCHHAX KPUBHM3HU, HK HOMIHaAbHA
KPHMBHU3HA 1, BIANOBIAHO, KpUTUYHA CUAa OyJe 3HA4-
HO Oinbmioro. ITo-gpyre, B €Bpokogl aasi GeToHiB
MminHicTio HuzKde Kaacy C50/65 rpanuyani gedopmarii
cTHCKY 6eTOHY O4HAKOBI 1 CKAaZa10Th £, =350% 107. Ie
O3HAYAE, 110 HOMIHAABHA KPUBHU3HA HE 3AAEKHUTH Bij
MiITHOCTI 6€TOHY (IIpH pi3HOMY KAaci MiITHOCTI 6eToHY
BOHA O/HAKOBA), IO CyHepeuuTh (Pi3UYHIA NPHPOAI
asuma. ITo-Tpere, ans MarepianiB, y AKHX giarpama
pobOTH € KPUBOAIHIIHOIO 3 HU3XIAHOIO TIAKOIO, BTpa-
Ta CTIHKOCTI MOKE PEaAI3yBaTHCh 1 JASL KOPOTKOTO

MO3AII€HTPOBO CTHCHYTOI'O 3aA1306€TOHHOIO €AeMEeH-
Ta (Iepepisy) Ta HaBiTh A €AEMEHTA, IIJ0 3TMHAETHCS.
3azHaveHi HEJOAIKH METOAY HOMIHAABHOI KPHBH3-
HU BIIAMBAIOTh HA TOYHICTh BHU3HAYEHHS KPHUTHYHOI
CHAM, a OTKe, 1 Ha HaAgI{HICTb I103ALEHTPOBO CTHC-
HYTHX 3aAI300€TOHHHUX €AEMEHTIB Ta, BIANOBIJHO, HA
HaAliHICTB 6y4iBeAb y iAoMY, Pe3yabTaToOM BUKOHAH-
HA 4aHOI poOOTH € PO3POOAEHHA METOAY PO3PAXYHKY
i3 BU3HAYEHHS HECY4Ol 34aTHOCTI (KPUTHIHOI CHAH)
IHYYKHX [O3AIl€HTPOBO CTHCHYTHX 3aA1300€TOHHUX
€AEMEHTIB HAa OCHOBI BUKOPHUCTAHHA AePpOpMaLIHHOIO
METOAY OIIHKH HaIpy:KeHO-4ePOPMOBAHOIO CTAHY
PO3PaxyHKOBOTO Iepepi3y, mo 6a3yeTbcad Ha UYITKHX
$i3ugHO OOIPYHTOBAHMX IIE€PEyMOBAX.

BHuCHOBOK. AHaAi3 pe3yAbTaTiB CIIIBCTABACHHA
BEAUYMHU KPUTHYHOI CUAU, BU3HAYEHOI 324 METOAOM
pearbHOi KPHUBU3HU 3 IOKa3HMKAMHU €KCIEPHUMEH-
TAABHUX JOCAIZKEHb THYYKHX 3aA1300€TOHHUX KOAOH
IIpU Pi3HUX MAapaMeTPax: MIITHOCTI OETOHY, THYYKOCTI,
BI/ICOTKA apMYyBaHHsA, IIOYATKOBOTO €KCIEHTPUCHTETY,
YMOB 3aKpIIIA€HHS Ha onopax (ycboro Aasi 66 KOAOH)
IIOKA32aB, IO 3alPOIIOHOBAHHUI METO/ PearbHOI Kpu-
BHU3HH JOCTAaTHBO TOYHO BIJOOpaKa€ sAK SIKICHO, Tak 1
KIABKICHO HPOLIEC, IJO MOJEAIOETBCA.

KAIOUOBI CAOBA: 3aAi306eTOHHUI MO3aIleHTPOBO
CTUCHYTHI €A€MEHT, AepOpPMAIIITHIII METO, THYUKICTS,
PO3PAXYHKOBA JOBKHHA, METO/, PEAABHOI KDUBHU3HH.
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ABSTRACT

The up-to-date construction norms of Ukraine do
not provide a detailed method for determining the
bearing capacity of the slender eccentric-compressed
members considering of the second order effects. To
determine the bearing capacity of the slender reinforced
concrete members taking into account the second order
effects in the European norms the method of nominal
curvature is applied. The method is based on the
calculations of the predicted curvature (deflection) under
the ultimate compression deformations of the concrete
and reinforcement yield deformation. This method has
a number of imperfections. First of all, the loss of the
bearing capacity of the slender members (buckling), as a
rule, occurs at significantly lower values of curvature than
the nominal curvature and, accordingly, the buckling
force will be much greater. Secondly, in Eurocode for
concrete strength less than class C50/65 the ultimate
deformations of concrete compression are the same and
equals to &,=350x10°. This means that the nominal
curvature does not depend on the concrete strength (for
the different concrete classes of strength it is the same),
contrary to the physics of the phenomenon. Thirdly, for
materials, which have the curvilinear behavior diagram

N\

with the drooping branch, the buckling can be realized
also for a short eccentric-compressed reinforced concrete
member (cross section) and even for a bending member.
The mentioned imperfections of the nominal curvature
method have influence on the accuracy of the buckling
force determining and hence on the reliability of the
eccentric-compressed reinforced concrete members and,
accordingly, on the reliability of buildings in general. The
result of this work is the development of an engineering
method for calculating the bearing capacity (buckling
force) of the slender eccentric-compressed reinforced
concrete members applying a deformation method for
the calculation of the stress-strain state of a design
section, which is based on accurate physically grounded
preconditions.

Conclusion. Theresultsof theanalysisof the comparison
of the buckling force value, determined by the effective
curvature method, with the data of experimental studies
of the slender reinforced concrete columns under the
different strengths of concrete, slenderness, percentage
of reinforcement, initial eccentricity, support conditions
(total of the 66 columns) showed that the proposed
effective curvature method accurately represents both
qualitatively and quantitatively the simulated process.
KEY WORDS: Reinforced concrete eccentric-
compressed member, deformation method,slenderness,
buckling length, effective curvature method.

STATEMENT OF PROBLEM

The up-to-date construction norms of Ukraine
DBN V.2.6-98:2009 [1]and DSTU B V.2.6-156:2010 [2]
do not provide a detailed method of determining the
bearing capacity of the slender eccentric-compressed
elements considering of the second order effects.
At the same time, EN 1992-1-1, Eurocode-2 [3]
and DSTU-N B EN 1992-1-1 [4] proposed the method
of nominal curvature to determine the bearing
capacity of the slender reinforced concrete elements,
taking into account the second order effects. The
method of nominal curvature is based on applying in
calculation a predicted curvature (deflection) under
the ultimate compression deformations of the concrete
and reinforcement yield deformation (g, and &).
This method has a number of imperfections. First
of all, the loss of the bearing capacity of the slender
elements (buckling), as a rule, occurs at significantly
lower values of curvature than the nominal curvature
and, accordingly, the critical force will be much
greater. Secondly, in [3,4] for concrete of strength
less than class C50/65 the ultimate deformations
of concrete under compression are the same and
equals to €,=350x107. This means that the nominal
curvature does not depend on the concrete strength
(for the different concrete classes of strength, it is the
same), contrary to the physics of the phenomenon.
Thirdly, as it was have pointed in [5,6], for materials
in which the behavior diagram is curvilinear with
the drooping branch, like concrete, the buckling
(unbalance between load and internal forces) can
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be realized also for a short eccentric-compressed
reinforced concrete element (cross section) and even
for a bending element. The mentioned imperfections
of the nominal curvature method have an influence on
the accuracy of determining the buckling force, and on
the reliability of the eccentric-compressed reinforced
concrete members and, accordingly, on the reliability
of buildings in general.

RESEARCH OBJECTIVE

The purpose of the study is to develop an
engineering approach concerning the determination
of a bearing capacity (buckling force) of the slender
eccentric-compressed reinforced concrete members
based on accurate physically grounded preconditions
and applying a deformation method for the calculation
of the stress-strain state of a design section.

BASIC MATERIAL

Basis of columns (piers) design. In the slender
eccentric-compressed rein-forced concrete members,
which are under compression and bending (eccentric-
compressed), the bending occurs. Increasing of bending
causes 2 moment change (as a rule, its increase) into
any cross-section along of a member, that equals to the
product of the normal force by the deflection at this
point. This leads to a decrease of bearing capacity of
the slender compressed member in comparison with
the value obtained from the calculation, without taking
into account the effect of buckling. For the compressed
reinforced concrete members, in most cases, the
buckling effect is so small that it can be neglected in
terms of practice. However, in some cases, when one has
to deal with flexible members, for which the buckling
not only has an effect, but is crucial for the value of
their bearing capacity. Thus, a slender member is one,
the bearing capacity of which significantly depends
on the development of deflections along its length,
and that should be taken into
account during design.

gave impetus to the development of a separate direction
of structure mechanics. Real structures have geometric
deviations, heterogeneity of materials by volume, and
so on. In addition, another significant difference from
the classical solution is that such material as concrete
has a distinct nonlinear character of deformation,
limited strength and deformability. Therefore, as
a rule, the real structure calculating methods were
developed on the basis of the appropriate experimental
and theoretical studies.

At designing, first of all, it is necessary to consider
which form of bending of the slender compressed
member is realized in a real building or structure.
It is accepted that there are two possible forms: the
buckling of the building as a whole structure or the
bend of a single column without buckling of the entire
building (Fig. 1).

As can be seen from the figure, these types
correspond to the different forms of the bending
moment diagram. It should be borne in mind that
if the frame of the whole building is buckled, all
the columns of one floor will have the same shape
of the moment’s diagram. Taking into account the
mentioned above, it is recommended to consider three
basic steps at determining the bearing capacity of the
slender compressed reinforced concrete members,
subject to buckling:

B at the first stage, it is necessary to determine
which forms of buckling mode are possible in the
building under consideration;
at the second stage it is checked whether the
effect of buckling is significant and, accordingly,
whether this structure should be considered as a
slender;
at the third stage, if the impact of buckling
is significant, then it is necessary to perform
calculations taking into account the buckling of
the member.

The experimental-
theoretical studies of the

stability of slender compressed
members began from the
earliest period of structure

mechanics development. Thus,
Euler (1707-1783) obtained

a solution of the problem
of the stability of a centrally
compressed idealized rod from
an elastic material without

limitation of its strength.

Although, from a practical Moment in columns BEWN Moment in column
pomt of view, th‘1s solut.lon under eccentric under eccentric
is difficult to use in practice, a) compression b) .
since in nature there are no P compression
ideal centrally compressed

rods from an ideally elastic
material. However, this work

Fig. 1 Types of the columns bending in the building structural design:
a) buckling of the building frame; b) buckling of one column
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According to the accepted classification of the
structure systems, compressed members are divided
into:

B members that are distorted and not distorted,;

B rigid and slender.

The structures that do are not distorted refers to
those, the bearing capacity of which does not depend
significantly on the second order effects (buckling).
The structures that are distorted refers to those, the
bearing capacity of which depends significantly on the
second order effects (Fig. 1, a).

If additional bending moments amount to more than
10% of the first order moments, this is considered to
be a significant effect of displacement on the member’s
bearing capacity. In practice, it is very difficult to
determine whether this structure is distorted or not
distorted, and it depends on the structural system
resistance (rigidity) to horizontal displacement. The
presence in the structure system of the distorted
members negatively affects on the building resistance
under seismic impacts. Therefore, in practice, to
provide the building’s seismic resistance, designers,
by means of constructive measures, try to significantly
reduce the displacement effect by arranging "rigid core"
or (and) longitudinal and transverse wall elements,
diaphragms, bracing. In fact the “rigid” structure
diagram is realized. The presence in the building
of "rigid core", bracing and walls, which prevent
significant displacement, is considered as a system
that is not distorted and excludes the requirement
for further control of the displacement of the entire
structural system.

In case of establishing that in the structural system
there are no distorted members and the influence of
the second order effects is insignificant, only the local
deformation of individual columns (Fig. 1, b) should
be considered.

Otherwise, when we deal with a structural system, in
which there are members that are distorted, we have to
consider two sub-cases:

B the structural system

consists of rigid members.
The rigid structures may be
accepted as non-distorted,
except circumstances when
the rigidity members are
relatively slender. In such
case, the rigidity members
should be analyzed for the
possibility of displacement.
But, if we accounting
the deformation of the
rigidity members inside the
structural system (Fig. 1,a),
then it is possible to neglect
the displacement effect;

B thestructuralsystemconsists

of slender members. Such
structures, at first, have

Points of
inflection

" S -tcxn -
Z|
5 c
'y CE 2
Column
length

a)

to be checked for their ability to bear the
displacement of the whole system (Fig. 1,a) and
then each column in diagram should be checked
for its resistance to deformation ( Fig. 1,b).

After completing the first stage analysis, at the
second stage it is necessary to perform a check on the
impact of buckling on the column bearing capacity
- whether it is significant, or it can be neglected. It
is assumed that the effect of buckling is significant
when it increases the first order moment more than
by 10%. However, in practice, this limit is difficult to
use, because it is necessary to perform the complete
calculation of the structure. Therefore, in Eurocode-2
and in DBN B.2.6-98 the simplified rules, which allow
determining without complicated calculations whether
the specified limit is reached, are proposed. These
rules are formulated in two parameters:

B column buckling length;

B slenderness ratio.

The definition “buckling length” is used in almost
all cases, for which itis necessary to take into account the
effects of buckling. The buckling length is the length of
an equivalent compressed pin-ended member, which
has the same resistance to the buckling failure as the
designed member (Fig. 2).

An equivalent compressed member has the same
characteristics of the normal cross-section and materials
as the considered member. The value of the buckling
length of the compressed member depends on the
bending type of and the fixing conditions at the ends.
The buckling length of the member, which does not
have a distortion, is 0.5...1.0 of its actual length. The
buckling length of the members, which are distorted
and unfixed, can be larger up to two times than their
actual length. Mathematically, the buckling length is a
function of the rigidity of a column and the members
adjacent to each of its ends.

According to DSTU B. V.2.6-156 [2], in the general
case the dependences for determining the buckling

Imaginary point/,arﬁ' —
of inflec’lcion

Buckling
length

Point of

inflection

b)

Fig. 2 Concept of buckling length:
a) isolated column; 6) column in case of frame displacement
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length 10 of the compressed members of reinforced
concrete frames are in the following view.

For fixed members (columns of the rigid frames)
Fig. 3f

[,=0,5 || 1+ i | 1+
0,45+k,

For unfixed members (see Fig. 3g):
ly = [ X large of two quantities:

a= [[1+1050% |,
k +k,

b =1+ u A1+ ky ,
1+k 1+k,

where: [, is a buckling length of column; k, and %, are
respectively relative angular rigidities of the supporting
fixings; k = (0 / M)«(EI/1); 0 is an angle of rotation
in fixing of the column ends from bending moment;
M is the moment that occurs in fixing under buckling
failure; / is the length of the compressed member in
cleanliness between the end’s fixing; E/ is the initial
bending rigidity of the compressed members which are
checked for stability.

If, above the upper end of the considered column or
below its bottom end there is a compressed member,
it is necessary to determine whether this column
increases the value of the deflection, or, conversely,
limits it. When determining £, if the fixing of the ends
increases the deflection, then the angle of rotation
under buckling (EI/[), should be replaced by [(EI /1),
+ (EI/1),/, where a and b are respectively representing
a compressed member (column) above and below the
node. If the column influence limits deflection, then in
calculation a rigidity factor 6 / M can be included. It is
logical to assume that the probability of simultaneous
influence on increasing of the column deflection
the above and below the connections is rather low.
Although, in the column a deflection will be developed,
but it has to be much less than in the column under
buckling failure.

7R T T N

k2
(1)
0,45+ k,

(2)

3)

(s E)

a)h=1 b)h=2l c)hkb=0,7 dh=1/2 e h=1/

Fig. 3 Examples of different forms of stability loss and corresponding

At that, the rigidity of the fixed members should
considering the effect of nonlinear concrete behavior
when determining the buckling length.

Taking into account the above mentioned, the length
of the real column with behavior in the structural
system according to the diagram 3 c (Fig. 3), will be
0,77 [, and according to the diagram 3 d — 0,59 [.

For some design diagrams of column fixing the
reduced length was theoretically obtained for the
particular members of constant cross-section (Fig. 3).

The second factor that effectively influences on the
column stability under buckling is its slenderness ratio,
which is defined as:

A=1y/1, (4)
where: [, is buckling length; 7 is radius of gyration of a
concrete cross-section without cracks.

The radius of gyration of a concrete cross-section is
determined from relation:

=/

where: I is the second moment of the cross-section area;
A, 1s the cross-section area. For a rectangular cross-section
I = bW’/12; A= bh, respectively, the radius of gyration
i=0,2887h, where / is the depth of the cross-section of
the column on the axis, which is perpendicular to the axis
of the bending. The circular section radius of gyration is
equal to its actual radius.

In the old SU building code (SNiP), the ratio of the
column buckling length to the corresponding depth of
the cross-section was taken as the slenderness ratio. Such
an approach rather corresponds to the physical nature
of reinforced concrete members. This is due to the fact
that we have to deal not with the classic (idealized) cases
of buckling, but with the fact that concrete and reinforce
have pronounced nonlinear properties. But the use of
the inertia radius has some advantages, since it is more
universal and provides possibility to design columns not
only with a rectangular cross section.

To complete the second stage of the compressed
reinforced concrete columns analysis it is necessary to
determine whether ones has to take into account the
buckling influence on their bearing capacity. There

'1 are software complexes that

Y l with sufficient accuracy solve
S 2

()

such problems for complex
reinforced concrete systems
\ taking into account geometric
and physical nonlinearity.
The building codes provide a
simplified method for evaluating
the need to take into account
the buckling influence.

Thus, the buckling influences
can be neglected if the column
slenderness A is less than a

1 F '
i \ [
: . F &

I v |
!

' 1| |

u
L

ol L

0 1/2<h=<]

qg) b =21

buckling lengths of isolated members
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It is recommended to determine the value of A, by
the relation:

l,, = 20-4-B-C/~/n, (6)

_ MOEqp .

where: A = 1/(1+0,2y,), here @,y = (0(@,;0) » 18
Mz,

reduced creep coefficient (if coefficient 3, is unknown,
one can take it A = 0.7). It is not difficult to show that
when changing M,,,/Mz, from 0.4 to 0.9 for medium-
strength concrete (class C20/25 ... C35/40) factor A has
value from 0.57 to 0.85. Therefore, in Eurocode-2 it is
recommended to take A = 0.7 and B =+/1+ 2w , where
w=A,f,4/A.f.c- As a rule, the purpose of calculations is to
determine the value As, then it is unlikely that the value
of B will be known, but it is possible to estimate the value
of w as for the first order effects applying calculations
by the deformation method. If the coefficient w is
unknown, it is allowed touse B = 1.1 and C = 1.7 - r,,
where r, = M,/M,, is the ratio of moments. M,, and M,,
are the moments of the first and second order effects on
fixed ends, at that |M,,| = |M,,|. Thus, for a usual case,
with the column under bending with two moments, C
always will be more than 1.7.

If the moments M,, and M,, at the fixed ends give
tension on one side, it is necessary to take 7, positive
(i.e. C £ 1.7), otherwise, ,, is negative (i.e. C > 1.7). The
value of r,, should be taken equal to 1.0 (i.e. C = 1.7) in
the following cases:

B in the fixed members, in which the first order
moments occurs only/or mainly fromimperfections
or transverse loadings;

B for at all unfixed members.

w= A,f,4/ A.f.a 1s a reinforcement coefficient; A; is
the total reinforcement area of a cross-section; A, is
the total area of a concrete cross-section; n = Ny / A,
f.a 1s a relative axial force; M, is the moment taking
into account the first order effect at practically constant
combination of loads (limit state of the second group);
Mg, 1s the moment taking into account the first order
effect at design combination of loads (limit state of the
first group).

Thus, using the recommended above values of the
factors in relation (6), the minimum value 1,, for a
column that bends under two moments, can be 27 / \/; .

For cases of biaxial bending, the buckling criterion
can be checked separately for each direction. Depending
on the results of these checks, the impacts of the second
order effects: a) may not be taken into account for both
directions; b) must be taken into account in one direction
or ¢) must be taken into account in both directions.

CALCULATION OF THE COMPRESSED
MEMBERS TAKING INTO CONSIDERATION
BUCKLING

If the preliminary analysis showed that the further
design of the compressed members should be
performed taking into account buckling (the members
are slender), then the designer has to perform the

N\

structure calculation taking into account the second
order effect.

Unfortunately, the national building codes of
Ukraine do not includes the necessary practical
recommendations for calculations of the compressed
members taking into account buckling. Since the basic
principles are taken in EN 1992-1-1, to ensure them it
is also possible to use the relevant recommendations
which are given in the manual [7].

So, in the given manual [7] it is recommended to
apply one of the 4 main approaches:

1.  The general method, which is based on the
nonlinear calculation of the structure, taking into
account both physical and geometric nonlinearity. Of
course, such an approach requires applying of complex
software. Therefore, the manual does not consider it.

2. Calculation taking into account buckling,
which is based on the nominal rigidity of a member
or structure. This method requires less complex
software than the previous one, but for it the detailed
information concerning the reinforcement of the
member is also necessary.

3. Method with applying the moment increase
factor. According to this method, the calculated
moment which includes also second order effects, is
determined by multiplying the first order moment by
the determined factor.

4. The method of nominal curvature. According
to this method, the limiting value of the deflection is
determined, and the second order moment, which is
calculated at ultimate deflection, is added to the first
order moment.

The analysis of the considered simplified methods
(2-4) was showed that each of them has both positive
and negative properties those influencing on the
accuracy of the buckling force determination.
Therefore, applying the deformation method [1,2],
the best results of the calculation can be obtained by
the proposed so-called effective curvature method.

In the classical theory when determining buckling
failure, as a rule, deformation of the slender pin-ended
member is considered. Such diagram of the member
fastening does not correspond to the real conditions
of the column in the building. As a rule, a column in
a frame is monolithically joined with other members
(floors, columns from below and from above) from
above and from below and accordingly is subjected
to their influence. The column in a general case is
schematically shown in Fig. 4.

As one can see from the figure, a part of the column
can be considered as a hinged on the ends, similar to
that for which there are methods of calculation. The
distance between points of inflection is taken at the
buckling length /,. The maximum moment caused by
the buckling effect will be in the middle of the buckling
length of the column and, as a rule, is close to the
middle of the length of the real column. Therefore,
the moment in a critical cross-section includes the
maximum first order moment and the moment caused
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Points of
inflection

Fig. 4 Moments and deformations of a single column in a rigid frame:
a) bent shape; b) first order moments; c) bending moment caused by
deflection; d) moment’s diagram

by random influences. In the case of different values
of the moments at the column ends, the manual [7],
recommends to estimate the moment in the critical
section by relation (7):

M0620,6M

max

+ 0,9M,,;,,. (7)
where: M,, and M,,, are, accordingly, maximum
and minimum moments at the column supports.
Moreover, the relation (7) is valid if the moment M, is
not less than 0,4 M,,,.

In all calculation methods, mentioned above, it is
necessary to take into account the possibility that the
structure may have the occasional vertical deviations.

The requirements for taking into account the
influence of geometric imperfections are given in 6.1
of DSTU B V.2.6-156.

For particular members, the influence of
imperfections can be taken into account in two
alternative ways, a) or b):

a) — as a certain eccentricity in the middle of the
column, expressed through:

e, = (92 ZO /2, (8)

where: [, — buckling length of the column.

b) — for particular slender columns, fixed by the
system of braces, for the purpose of simplification
it is recommended to take bigger between values
ey = 1,/400, e, = h/30 or ¢, = 10 mm. Accordingly, the
moment from random eccentricity influence will be:

MOZ Ndeeo’ (9),

So, as the moment M; from random eccentricity
has the maximum value in the middle of the column
length, it should be added not to M,,,.and/or M,,,, but
to M,,. Thus:

Buckling
length

Mioy1)=Moe+M; . (10)
/ CREEP INFLUENCE
CONSIDERING
Usually, calculating the
bearing capacity of reinforced
concrete members, the effects
of concrete creep, as a rule,
are not taken into account.
At the same time, as is shown
by experimental studies,
the effects of creep have a
significant impact on the
bearing capacity of the slender
columns. A decrease of their
bearing capacity can reach up
to 30%. Consequently, there
iIs an urgent necessity to take
into account the creep effects
when calculating of the slender
reinforced concrete members.
The duration of the load can be taken into account
simplified, using the reduced creep coefficient g,
which, being applied with design load, gives a creep
deformation (additional curvature), corresponding to
the main combination of loads:

Yo = P(®:l0) Mopgp /Moga, (D
where: @(e,l,) — is ultimate creep coefficient (see
section 3); My, — is the first order moment under
quasi-constant loads (second group); M, - is the first
order moment under design load combination (first
group).

The curvature of the critical cross-section of the
slender reinforced concrete members may increase due
to the development of the concrete creep deformations.
It is recommended to taken into account this effect
multiplying the curvature value by factor £,

Je

k,=1+(0,35 +=—=--1/150
v (0, 200 )Py (12)

CALCULATION OF THE SLENDER MEMBERS’
DEFLECTION

The slender members’ deflection can be determined
if we assume that the distribution of the deflection
along the column length is described by a sinusoid.
Assuming that the curvature is proportional to the
moment, that equal to the value of the deflection
multiplied by the magnitude of the axial force, one can
obtain the following dependence:

a={1(}/)sin (%j dx .

In the middle of the column (x/[, =0.5) a deflection,
which in EN 1992-1-1 for convenience is denoted as

(13)
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eccentricity, approximately will be:

a=e,=0,1I; (%)

where e, is the second order eccentricity; I /r or X is a
curvature in cross-section.

Thus, the total eccentricity of force applying in the
designed cross-section is:

(14)

e=egtep,tes. (15)
If necessary, one can determine the designed
moment in the middle of the column:

Mp/=Mogg + M),

where: M,= Ng,Xe,.

It should be kept in mind that with the development
of the deflection, both the moment in the middle
of the column and moments at the ends fixing are
changed. As a rule, the numerically smaller moment in
fixings increases, and the larger one decreases. Such
moments’ redistribution is possible if the reinforced
concrete cross-section can bear it without failure.

EFFECTIVE CURVATURE METHOD

The method of nominal curvature does not entirely
reflect the nature of the considered complex physical
phenomenon, since the buckling failure of a slender
compressed member occurs, as a rule, much earlier
than the value of nominal curvature is reached. The
above indicated can occurred lead to significant errors
in the critical force determination and not in the margin
of bearing capacity. As shown in works [5,6], when the
real curvilinear diagrams of concrete deformation are
applied, both bending and short eccentric-compressed
reinforced concrete members may lose their stability
(disturbance of equilibrium between internal forces and
external load). In national building codes of Ukraine
[1,2] this is the so-called "extreme criterion of bearing
capacity loss". Therefore, an improved method for
determining the bearing capacity of slender reinforced
concrete members applying not the nominal (ultimate)
but effective curvature - the effective curvature method
is proposed. The nominal curvature, as a rule, can
be realized at buckling failure in the columns with
slenderness close to the ultimate one.

Effective curvature method allows to determining
the buckling forces in slender members more precisely.
Moreover, the elementary programs in the Excel
environment can be used for calculations. This method
can be used not only for of rectangular, but also for
circular and I-shaped cross-sections, as well as pre-
stressed slender reinforced concrete members.

The basic principles of the effective curvature
method are as follows.

After the initial analysis of the compressed
members deformed state in the building frame,
and determination the buckling length [/, and the

N\

slenderness A;, , a comparison of real slenderness with
the ultimate one is performed. In the case of 1>, it
is necessary to perform calculations of the compressed
member taking into account the influence of buckling.

A block of necessary output data is formed including
the geometrical parameters of the column and its
cross-section, values of normal force (Ng) and the
column moments at the ends (M, and M,,), physical
and mechanical characteristics of concrete and
reinforcement, reinforcement area and ultimate creep
factor ¢ (oo, t,). The moments at the column ends can be
determined from the calculation of the static diagram
of the frame system. Since the effective curvature
method assumes the presence of an reinforcement area
of a reinforced concrete column cross-section, it can be
set in two approaches.

By the first one, the reinforcement for the cross-
section of a short column is determined by an iterative
way using the sum of eccentricities, random and
from the first-order effects (¢, = ¢, + ¢,), where
¢, 1s a random eccentricity. It should be noted that,
engineering experience of the slender eccentrical-
compressed members calculating shows, that
it is recommended to take bigger between values
e, = 1,/400, e, = h/30 or e, = 10 mm as a random
eccentricity. The calculations are performed in
the sequence shown below. In the case where the
deformations of the reinforcement in the tension
region are less than a value e,= -f,,/ E,, it is necessary
to increase the reinforcement.

By the second one, the average factor of
reinforcement, approximating to 2% of the cross-
section area we is assigned, and calculations in the
given below sequence are performed. If it is necessary
due to the calculation results, the reinforcement
changes and the calculations are repeated until the
difference between the calculation result and the Ny,
will be within * 5%.

In the presence of all necessary initial data,
calculations are performed in the following sequence:

1. According to the relation (1), the design length
of the column is determined.

2. Byrelation (4), the column slenderness coefficient
is determined.

3. The ultimate slenderness is determined by
relation (6).

4. Evaluation of the necessity of taking into
account the second order effects in calculation
is performed by the inequation A = 1,,,. If result
of solving is positive, it is necessary to perform
calculations considering buckling.

5. By relation (12), the coefficient K, of creep
influence on the critical force is determined.

6. The greater of two eccentricities from the
influence of the support moments in the middle
of the column is determined:

e = 0,6 ¢4+ 0,4 -4, €5, = 0,4 -y,

yd

where: ey, = M/ Ny, €p;= My / Ng,.
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7. The greater of random eccentricity values
e, =1,/400, e, = h/30 or e, = 10 mm is determined
for slender columns.

8. The second-order eccentricity at an i-step
of the calculation taking into account the
creep influence is determined by relation:
ep= 0,1K, 17 N,,.

The second order eccentricity is determined at
each step by ¢,

The curvature ¥, is determined in the process
of a system of nonlinear equilibrium equations
solving by the algorithm given in [2].

9. The total eccentricity (random, first order and
second order) is determined at each step of the
calculation: e, = ¢, + ¢y + e,

10. The change in the total eccentricity at each step of
the calculation is recommended to be performed
in the following way. In the first calculation
step, at ,,=0.1¢,, the value of ¥, is determined
for the sum of eccentricities - random ¢, and
from the first order influence ¢,. The second
order eccentricity ¢,,, and the total eccentricity
¢y are determined. With eccentricity e, the
calculations are performed on the second step
for ¢,,=0.2¢,. By the obtained on the first step
value N, one determines the second order
eccentricity e,, and the total eccentricity e,,,.
By the eccentricity e, one determines the
curvature at the third step of the calculations and
so on until the deformation of the compressed
concrete of the value ¢, is reached.

11. Analyzing the table of calculation results, one
determines the buckling force (the maximum
value of normal force). A comparison of the
calculated buckling force with the external Ny,
should be done and, if the difference between
comparison values is within * 5%, one can
assume that the required precision of the
solution has been achieved. If the specified
condition is not satisfied, it is necessary to
increase or decrease
the reinforcement and
perform calculations
according to items
7...10. In case of the
necessity to obtain
more proper results,
it is recommended to

z§1=50mm

section is 300 X 300 mm (Fig. 5). Class of concrete
strength is C30/35 (f,=22,5 MPa; f,=19,5 MPa;
eaa= 0,00181; ¢,,=0,00172; Eana= 0,00325;
Earc= 0,0031). Column reinforcements are 4 (328
A500C of total area A= 24,63 sm’ f,=500 MPa;
f,a=416,6 MPa. Ultimate creep coefficientisy(o,t,)=2,3.
Ng= 1500 kN; M, = 40 kN-m; M,=80 kN-m. Ratio
M, /M =0,75. The column is situated into a rigid
frame.

CALCULATION

1. By relation (1) atk,=k,=0,1 (see. Note to 6.2.2.2.3
[2]) compute the column buckling length:

1,=0,5 [ 1e—f | fe—K |
0,451k ) | 0,45+,

=0,5-9,6 || 1+ 0.1 1+ 0.1
0,45+0,1 0,45+0,1

2. Column slenderness is

j =0,59/=5,67m.

I, 5,67

i 0.2887x0.3

b

3. Calculate the ultimate slenderness by relation (6):

| _204BC _20-0,7435-1,59-2,2

" n 0,855

where:

=52,1,

A=1/(1+0,29,)=1/(1+0,2'1,725)=0,7435,

where y,=p(®,t) - My, /Mz,=2,30,75 =1,725;

M02=80kN'm

fulfill several iterations
for  clarifying  the A,
reinforcement.

250

Zs3

AN EXAMPLE OF

[=9.6 m

300m

DETERMINING THE
BUCKLING FORCE BY THE
EFFECTIVE CURVATURE
METHOD

It is given: concrete
column length is 9.6 m, cross-

300mm

Vv )
M01=4DkN-m

Fig. 5 Geometric parameters of column for calculation
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B=+1+20 =+/1+2-0,585=1,47,

where

w=Af,,/ A.f..=0,002463-416,6/ 0,3-0,3:19,5 =0,585,

C=17-r,=17+05=22,

there r,, = M,,/M,,= - 0,4/0,8= - 0,5;

n = Ny/Afu = 1,5/0,30,3-19,5 = 0,855.

The column slenderness is more than the ultimate
one 65,5 > 52,1. Thus, the column is slender and it is
necessary to calculate the second order effects.

4. Determine the eccentricity in the middle of the

column from the support moments

o =-40/1500=-0,0267m;

Cs=80/1500=0,0533m;

=0,6xe,,,+0,4x¢,, = 0,6x0,0533+0,4(-0,0267)=0,0213m
e,, = max
"L =0,4xe,,, =0,4x0,0533 =0,0213m,

obtained ¢, =0,0213 m.

5. Determine the random eccentricity for slander
column grater from e,=l, /400=5,67/400=
0,0142 m, e, = h/30 m, ¢, = 10,0 mm,

obtained ¢, =0,0142 m.

6. Determine the second-order eccentricity taking
into account the effect of creep:

e,=0,1(1/r)K, I’ =011} K,N= 0,1:5,67°-1,07- 8= 344N,
where:

K,=1+fp,=1+0,04081,725=1,07;

p=0,35+ fck/200-\/150=0,35+25,5/200-
-65,5/150=0,0408.

The curvature N is determined in the process of
solving the system of nonlinear equilibrium equations
by the deformation method. The solution algorithm is
similar to the one given in [2]. The difference lies in
the eccentricity value in the middle of the column at
each calculation stage:

Co=tote,te,=0,0213+0,0142+ 3,448 =0,0355+3,44N.

Performing the calculations by the algorithm
given in [2] with taking into account the deflection
(eccentricity e,) at each step by ¢, we obtain a
complete curve of the cross-section state up to
concrete destruction.

As can be seen from the table, the bearing capacity
(buckling force) of a slender column, taking into
account the second order effects, reaches a value
of 1605 kN, which is more than designed forces
Ny = 1500 kN by only 6,5%. Thus, the sufficient
accuracy of the calculation is provided. In Fig. 6
the full curve of the cross-section state for a slender
column is shown. For comparison, the same figure
shows the curve of the cross-section state of a short
column, taking into account the maximum value of
¢, As can be seen from the figure, formally, at given
output data, the buckling failure occurs in both
short and slender columns. Moreover, the buckling
failure of both short and slender columns occurs
considerably earlier than the nominal curvature is
achieved. As expected, the bearing capacity (load at
buckling) of the slender column is appreciably lower
than the bearing capacity of a short column (cross-
section).

Tablel
: = i i

SR B MPa | MPa | MN
ber m
1 0,0355 0.00031 | 0.0000527 | 0.000858 | 0.361446 | 53.423 | 19.116 | 0.494
2 0,0355+3,44-

0.000858

=0,03845 0.00062 | 0.00006975 | 0.001834 | 0.338028 | 105.65 | 32.291 | 0.872
3 0.041809 0.00093 | 0.00005022 | 0.002933 | 0.317125 | 156.67 | 39.37 | 1.149
4 0.045588 0.00124 | -0.00000062 | 0.004135 | 0.29985 |206.64 | 41.23 1.345
5 0.049725 0.00155 | -0.00008246 | 0.005442 | 0.284846 | 255.58 | 37.923 | 1.476
6 0.054219 0.00186 | -0.00020057 | 0.006869 | 0.270799 | 303.31 | 28.571 | 1.555
7 0.059127 0.00217 | -0.00035464 | 0.008415 | 0.257859 | 349.84 | 13.226 | 1.595
8 0.064449 0.00248 | -0.0005425 | 0.010075 | 0.246154 [395.25 | -7.75 1.605
9 0.070157 0.00279 | -0.0007719 | 0.011873 | 0.234987 | 416.6 | -35.65 | 1.560
10 0.07634 0.0031 -0.0010323 | 0.018774 | 0.225056 | 416.6 | -68.72 | 1.473
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Fig. 6 The complete diagram of short and slander columns

CONCLUSIONS

The results of the analysis of the comparison of
the buckling force value, determined by the effective
curvature method, with the data of experimental
studies of the slender reinforced concrete columns
under the different strengths of concrete, slenderness,
percentage of reinforcement, initial eccentricity,
support conditions (total of the 66 columns) showed
that the proposed effective curvature method accurately
represents both qualitatively and quantitatively the
simulated process.
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